Cargando…
Secure tumor classification by shallow neural network using homomorphic encryption
BACKGROUND: Disclosure of patients’ genetic information in the process of applying machine learning techniques for tumor classification hinders the privacy of personal information. Homomorphic Encryption (HE), which supports operations between encrypted data, can be used as one of the tools to perfo...
Autores principales: | Hong, Seungwan, Park, Jai Hyun, Cho, Wonhee, Choe, Hyeongmin, Cheon, Jung Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994372/ https://www.ncbi.nlm.nih.gov/pubmed/35395714 http://dx.doi.org/10.1186/s12864-022-08469-w |
Ejemplares similares
-
Privacy-preserving approximate GWAS computation based on homomorphic encryption
por: Kim, Duhyeong, et al.
Publicado: (2020) -
Secure searching of biomarkers through hybrid homomorphic encryption scheme
por: Kim, Miran, et al.
Publicado: (2017) -
A secure SNP panel scheme using homomorphically encrypted K-mers without SNP calling on the user side
por: Park, Sungjoon, et al.
Publicado: (2019) -
Secure Inference on Homomorphically Encrypted Genotype Data with Encrypted Linear Models
por: Zou, Meng, et al.
Publicado: (2023) -
Is Homomorphic Encryption-Based Deep Learning Secure Enough?
por: Shin, Jinmyeong, et al.
Publicado: (2021)