Cargando…
COVID-19-Related Brain Injury: The Potential Role of Ferroptosis
The COVID-19 pandemic has caused devastating loss of life and a healthcare crisis worldwide. SARS-CoV-2 is the causative pathogen of COVID-19 and is transmitted mainly through the respiratory tract, where the virus infects host cells by binding to the ACE2 receptor. SARS-CoV-2 infection is associate...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994634/ https://www.ncbi.nlm.nih.gov/pubmed/35411172 http://dx.doi.org/10.2147/JIR.S353467 |
Sumario: | The COVID-19 pandemic has caused devastating loss of life and a healthcare crisis worldwide. SARS-CoV-2 is the causative pathogen of COVID-19 and is transmitted mainly through the respiratory tract, where the virus infects host cells by binding to the ACE2 receptor. SARS-CoV-2 infection is associated with acute pneumonia, but neuropsychiatric symptoms and different brain injuries are also present. The possible routes by which SARS-CoV-2 invades the brain are unclear, as are the mechanisms underlying brain injuries with the resultant neuropsychiatric symptoms in patients with COVID-19. Ferroptosis is a unique iron-dependent form of non-apoptotic cell death, characterized by lipid peroxidation with high levels of glutathione consumption. Ferroptosis plays a primary role in various acute and chronic brain diseases, but to date, ferroptosis in COVID-19-related brain injuries has not been explored. This review discusses the mechanisms of ferroptosis and recent evidence suggesting a potential pathogenic role for ferroptosis in COVID-19-related brain injury. Furthermore, the possible routes through which SARS-CoV-2 could invade the brain are also discussed. Discoveries in these areas will open possibilities for treatment strategies to prevent or reduce brain-related complications of COVID-19. |
---|