Cargando…

Transitions between versions of the International Classification of Diseases and chronic disease prevalence estimates from administrative health data: a population-based study

BACKGROUND: Diagnosis codes in administrative health data are routinely used to monitor trends in disease prevalence and incidence. The International Classification of Diseases (ICD), which is used to record these diagnoses, have been updated multiple times to reflect advances in health and medical...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanusi, Ridwan A., Yan, Lin, Hamad, Amani F., Ayilara, Olawale F., Vasylkiv, Viktoriya, Jozani, Mohammad Jafari, Banerji, Shantanu, Delaney, Joseph, Hu, Pingzhao, Wall-Wieler, Elizabeth, Lix, Lisa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994899/
https://www.ncbi.nlm.nih.gov/pubmed/35397596
http://dx.doi.org/10.1186/s12889-022-13118-8
Descripción
Sumario:BACKGROUND: Diagnosis codes in administrative health data are routinely used to monitor trends in disease prevalence and incidence. The International Classification of Diseases (ICD), which is used to record these diagnoses, have been updated multiple times to reflect advances in health and medical research. Our objective was to examine the impact of transitions between ICD versions on the prevalence of chronic health conditions estimated from administrative health data. METHODS: Study data (i.e., physician billing claims, hospital records) were from the province of Manitoba, Canada, which has a universal healthcare system. ICDA-8 (with adaptations), ICD-9-CM (clinical modification), and ICD-10-CA (Canadian adaptation; hospital records only) codes are captured in the data. Annual study cohorts included all individuals 18 + years of age for 45 years from 1974 to 2018. Negative binomial regression was used to estimate annual age- and sex-adjusted prevalence and model parameters (i.e., slopes and intercepts) for 16 chronic health conditions. Statistical control charts were used to assess the impact of changes in ICD version on model parameter estimates. Hotelling’s T(2) statistic was used to combine the parameter estimates and provide an out-of-control signal when its value was above a pre-specified control limit. RESULTS: The annual cohort sizes ranged from 360,341 to 824,816. Hypertension and skin cancer were among the most and least diagnosed health conditions, respectively; their prevalence per 1,000 population increased from 40.5 to 223.6 and from 0.3 to 2.1, respectively, within the study period. The average annual rate of change in prevalence ranged from -1.6% (95% confidence interval [CI]: -1.8, -1.4) for acute myocardial infarction to 14.6% (95% CI: 13.9, 15.2) for hypertension. The control chart indicated out-of-control observations when transitioning from ICDA-8 to ICD-9-CM for 75% of the investigated chronic health conditions but no out-of-control observations when transitioning from ICD-9-CM to ICD-10-CA. CONCLUSIONS: The prevalence of most of the investigated chronic health conditions changed significantly in the transition from ICDA-8 to ICD-9-CM. These results point to the importance of considering changes in ICD coding as a factor that may influence the interpretation of trend estimates for chronic health conditions derived from administrative health data. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12889-022-13118-8.