Cargando…
Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN)
The lack of annotated datasets makes the automatic detection of skin problems very difficult, which is also the case for most other medical applications. The outstanding results achieved by deep learning techniques in developing such applications have improved the diagnostic accuracy. Nevertheless,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995545/ https://www.ncbi.nlm.nih.gov/pubmed/35419047 http://dx.doi.org/10.1155/2022/1797471 |
_version_ | 1784684322550185984 |
---|---|
author | Heenaye-Mamode Khan, Maleika Gooda Sahib-Kaudeer, Nuzhah Dayalen, Motean Mahomedaly, Faadil Sinha, Ganesh R. Nagwanshi, Kapil Kumar Taylor, Amelia |
author_facet | Heenaye-Mamode Khan, Maleika Gooda Sahib-Kaudeer, Nuzhah Dayalen, Motean Mahomedaly, Faadil Sinha, Ganesh R. Nagwanshi, Kapil Kumar Taylor, Amelia |
author_sort | Heenaye-Mamode Khan, Maleika |
collection | PubMed |
description | The lack of annotated datasets makes the automatic detection of skin problems very difficult, which is also the case for most other medical applications. The outstanding results achieved by deep learning techniques in developing such applications have improved the diagnostic accuracy. Nevertheless, the performance of these models is heavily dependent on the volume of labelled data used for training, which is unfortunately not available. To address this problem, traditional data augmentation is usually adopted. Recently, the emergence of a generative adversarial network (GAN) seems a more plausible solution, where synthetic images are generated. In this work, we have developed a deep generative adversarial network (DGAN) multi-class classifier, which can generate skin problem images by learning the true data distribution from the available images. Unlike the usual two-class classifier, we have developed a multi-class solution, and to address the class-imbalanced dataset, we have taken images from different datasets available online. One main challenge faced during our development is mainly to improve the stability of the DGAN model during the training phase. To analyse the performance of GAN, we have developed two CNN models in parallel based on the architecture of ResNet50 and VGG16 by augmenting the training datasets using the traditional rotation, flipping, and scaling methods. We have used both labelled and unlabelled data for testing to test the models. DGAN has outperformed the conventional data augmentation by achieving a performance of 91.1% for the unlabelled dataset and 92.3% for the labelled dataset. On the contrary, CNN models with data augmentation have achieved a performance of up to 70.8% for the unlabelled dataset. The outcome of our DGAN confirms the ability of the model to learn from unlabelled datasets and yet produce a good diagnosis result. |
format | Online Article Text |
id | pubmed-8995545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-89955452022-04-12 Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN) Heenaye-Mamode Khan, Maleika Gooda Sahib-Kaudeer, Nuzhah Dayalen, Motean Mahomedaly, Faadil Sinha, Ganesh R. Nagwanshi, Kapil Kumar Taylor, Amelia Comput Intell Neurosci Research Article The lack of annotated datasets makes the automatic detection of skin problems very difficult, which is also the case for most other medical applications. The outstanding results achieved by deep learning techniques in developing such applications have improved the diagnostic accuracy. Nevertheless, the performance of these models is heavily dependent on the volume of labelled data used for training, which is unfortunately not available. To address this problem, traditional data augmentation is usually adopted. Recently, the emergence of a generative adversarial network (GAN) seems a more plausible solution, where synthetic images are generated. In this work, we have developed a deep generative adversarial network (DGAN) multi-class classifier, which can generate skin problem images by learning the true data distribution from the available images. Unlike the usual two-class classifier, we have developed a multi-class solution, and to address the class-imbalanced dataset, we have taken images from different datasets available online. One main challenge faced during our development is mainly to improve the stability of the DGAN model during the training phase. To analyse the performance of GAN, we have developed two CNN models in parallel based on the architecture of ResNet50 and VGG16 by augmenting the training datasets using the traditional rotation, flipping, and scaling methods. We have used both labelled and unlabelled data for testing to test the models. DGAN has outperformed the conventional data augmentation by achieving a performance of 91.1% for the unlabelled dataset and 92.3% for the labelled dataset. On the contrary, CNN models with data augmentation have achieved a performance of up to 70.8% for the unlabelled dataset. The outcome of our DGAN confirms the ability of the model to learn from unlabelled datasets and yet produce a good diagnosis result. Hindawi 2022-03-23 /pmc/articles/PMC8995545/ /pubmed/35419047 http://dx.doi.org/10.1155/2022/1797471 Text en Copyright © 2022 Maleika Heenaye-Mamode Khan et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Heenaye-Mamode Khan, Maleika Gooda Sahib-Kaudeer, Nuzhah Dayalen, Motean Mahomedaly, Faadil Sinha, Ganesh R. Nagwanshi, Kapil Kumar Taylor, Amelia Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN) |
title | Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN) |
title_full | Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN) |
title_fullStr | Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN) |
title_full_unstemmed | Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN) |
title_short | Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN) |
title_sort | multi-class skin problem classification using deep generative adversarial network (dgan) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995545/ https://www.ncbi.nlm.nih.gov/pubmed/35419047 http://dx.doi.org/10.1155/2022/1797471 |
work_keys_str_mv | AT heenayemamodekhanmaleika multiclassskinproblemclassificationusingdeepgenerativeadversarialnetworkdgan AT goodasahibkaudeernuzhah multiclassskinproblemclassificationusingdeepgenerativeadversarialnetworkdgan AT dayalenmotean multiclassskinproblemclassificationusingdeepgenerativeadversarialnetworkdgan AT mahomedalyfaadil multiclassskinproblemclassificationusingdeepgenerativeadversarialnetworkdgan AT sinhaganeshr multiclassskinproblemclassificationusingdeepgenerativeadversarialnetworkdgan AT nagwanshikapilkumar multiclassskinproblemclassificationusingdeepgenerativeadversarialnetworkdgan AT tayloramelia multiclassskinproblemclassificationusingdeepgenerativeadversarialnetworkdgan |