Cargando…
Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN)
The lack of annotated datasets makes the automatic detection of skin problems very difficult, which is also the case for most other medical applications. The outstanding results achieved by deep learning techniques in developing such applications have improved the diagnostic accuracy. Nevertheless,...
Autores principales: | Heenaye-Mamode Khan, Maleika, Gooda Sahib-Kaudeer, Nuzhah, Dayalen, Motean, Mahomedaly, Faadil, Sinha, Ganesh R., Nagwanshi, Kapil Kumar, Taylor, Amelia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995545/ https://www.ncbi.nlm.nih.gov/pubmed/35419047 http://dx.doi.org/10.1155/2022/1797471 |
Ejemplares similares
-
Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN)
por: Heenaye-Mamode Khan, Maleika, et al.
Publicado: (2021) -
Studying the trend of the novel coronavirus series in Mauritius and its implications
por: Mamode Khan, Naushad, et al.
Publicado: (2020) -
Identification of Crown of Thorns Starfish (COTS) using Convolutional Neural Network (CNN) and attention model
por: Heenaye- Mamode Khan, Maleika, et al.
Publicado: (2023) -
A Deep-Learning Framework for Analysing Students' Review in Higher Education
por: Ngwira, Blessings, et al.
Publicado: (2023) -
Improved downstream functional analysis of single-cell RNA-sequence data using DGAN
por: Pandey, Diksha, et al.
Publicado: (2023)