Cargando…
Progress in Objective Detection of Depression and Online Monitoring of Patients Based on Physiological Complexity
Autores principales: | Čukić, Milena, López, Victoria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995561/ https://www.ncbi.nlm.nih.gov/pubmed/35418885 http://dx.doi.org/10.3389/fpsyt.2022.828773 |
Ejemplares similares
-
The Proposition for Bipolar Depression Forecasting Based on Wearable Data Collection
por: Llamocca, Pavel, et al.
Publicado: (2022) -
Editorial: Innovations in depression diagnosis and treatment outcome monitoring
por: Čukić, Milena B., et al.
Publicado: (2023) -
Detection of Depression and Suicide Risk Based on Text From Clinical Interviews Using Machine Learning: Possibility of a New Objective Diagnostic Marker
por: Shin, Daun, et al.
Publicado: (2022) -
Classification of Depression Through Resting-State Electroencephalogram as a Novel Practice in Psychiatry: Review
por: Čukić, Milena, et al.
Publicado: (2020) -
A dynamical model of SARS-CoV-2 based on people flow networks
por: López, Victoria, et al.
Publicado: (2021)