Cargando…
InfersentPPI: Prediction of Protein-Protein Interaction Using Protein Sentence Embedding With Gene Ontology Information
Protein-protein interaction (PPI) prediction is meaningful work for deciphering cellular behaviors. Although many kinds of data and machine learning algorithms have been used in PPI prediction, the performance still needs to be improved. In this paper, we propose InferSentPPI, a sentence embedding b...
Autores principales: | Li, Meijing, Jiang, Yingying, Ryu, Keun Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995897/ https://www.ncbi.nlm.nih.gov/pubmed/35419026 http://dx.doi.org/10.3389/fgene.2022.827540 |
Ejemplares similares
-
Identification of protein–protein interaction associated functions based on gene ontology and KEGG pathway
por: Yang, Lili, et al.
Publicado: (2022) -
PrePPI: a structure-informed database of protein–protein interactions
por: Zhang, Qiangfeng Cliff, et al.
Publicado: (2013) -
An Ensemble Learning Framework for Detecting Protein Complexes From PPI Networks
por: Wang, Rongquan, et al.
Publicado: (2022) -
Graph embeddings on gene ontology annotations for protein–protein interaction prediction
por: Zhong, Xiaoshi, et al.
Publicado: (2020) -
The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications
por: Dönitz, Jürgen, et al.
Publicado: (2012)