Cargando…
Improved Point-Cloud Segmentation for Plant Phenotyping Through Class-Dependent Sampling of Training Data to Battle Class Imbalance
Plant scientists and breeders require high-quality phenotypic data. However, obtaining accurate manual measurements for large plant populations is often infeasible, due to the high labour requirement involved. This is especially the case for more complex plant traits, like the traits defining the pl...
Autores principales: | Boogaard, Frans P., van Henten, Eldert J., Kootstra, Gert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996061/ https://www.ncbi.nlm.nih.gov/pubmed/35419014 http://dx.doi.org/10.3389/fpls.2022.838190 |
Ejemplares similares
-
Application-Specific Evaluation of a Weed-Detection Algorithm for Plant-Specific Spraying
por: Ruigrok, Thijs, et al.
Publicado: (2020) -
Deep Segmentation of Point Clouds of Wheat
por: Ghahremani, Morteza, et al.
Publicado: (2021) -
Point clouds segmentation of rapeseed siliques based on sparse-dense point clouds mapping
por: Qiao, Yuhui, et al.
Publicado: (2023) -
Tackling the class imbalance problem of deep learning-based head and neck organ segmentation
por: Tappeiner, Elias, et al.
Publicado: (2022) -
3D data-augmentation methods for semantic segmentation of tomato plant parts
por: Xin, Bolai, et al.
Publicado: (2023)