Cargando…
Privacy‐preserving quality control of neuroimaging datasets in federated environments
Privacy concerns for rare disease data, institutional or IRB policies, access to local computational or storage resources or download capabilities are among the reasons that may preclude analyses that pool data to a single site. A growing number of multisite projects and consortia were formed to fun...
Autores principales: | Saha, Debbrata K., Calhoun, Vince D., Du, Yuhui, Fu, Zening, Kwon, Soo Min, Sarwate, Anand D., Panta, Sandeep R., Plis, Sergey M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996357/ https://www.ncbi.nlm.nih.gov/pubmed/35243723 http://dx.doi.org/10.1002/hbm.25788 |
Ejemplares similares
-
Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation
por: Sarwate, Anand D., et al.
Publicado: (2014) -
Enhancing collaborative neuroimaging research: introducing COINSTAC Vaults for federated analysis and reproducibility
por: Martin, Dylan, et al.
Publicado: (2023) -
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
por: Abrol, Anees, et al.
Publicado: (2021) -
COINSTAC: A Privacy Enabled Model and Prototype for Leveraging and Processing Decentralized Brain Imaging Data
por: Plis, Sergey M., et al.
Publicado: (2016) -
Statelets: Capturing recurrent transient variations in dynamic functional network connectivity
por: Rahaman, Md Abdur, et al.
Publicado: (2022)