Cargando…
Enhanced hydrogen storage properties of ZrTiVAl(1−x)Fe(x) high-entropy alloys by modifying the Fe content
Lightweight ZrTiVAl high-entropy alloys have shown great potential as a hydrogen storage material due to their appreciable capacity, easy activation, and fast hydrogenation rates. In this study, transition metal Fe was used to improve the hydrogen storage properties of the equimolar ZrTiVAl alloy, a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996367/ https://www.ncbi.nlm.nih.gov/pubmed/35425073 http://dx.doi.org/10.1039/d2ra01064j |
_version_ | 1784684477227728896 |
---|---|
author | Ma, Xiangfeng Ding, Xin Chen, Ruirun Gao, Xuefeng Su, Yanqing Cui, Hongzhi |
author_facet | Ma, Xiangfeng Ding, Xin Chen, Ruirun Gao, Xuefeng Su, Yanqing Cui, Hongzhi |
author_sort | Ma, Xiangfeng |
collection | PubMed |
description | Lightweight ZrTiVAl high-entropy alloys have shown great potential as a hydrogen storage material due to their appreciable capacity, easy activation, and fast hydrogenation rates. In this study, transition metal Fe was used to improve the hydrogen storage properties of the equimolar ZrTiVAl alloy, and ZrTiVAl(1−x)Fe(x) (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys were prepared to investigate the microstructure evolution and hydrogen storage properties. The results show that the ZrTiVAl(1−x)Fe(x) alloys are composed of a C14 Laves phase and Ti-rich HCP phase. With Fe substituting Al, the fraction of the C14 Laves phase increases and that of the HCP phase decreases. Besides, the interdendritic area fraction reaches the maximum when the Fe ratio is 0.2. The element V transferred to the C14 Laves phase from the HCP phase, which is caused by the strong affinity between V and Fe. The ZrTiVAl(1−x)Fe(x) alloys show enhanced hydrogenation kinetics and capacities. Notably, the ZrTiVFe alloy can reversely absorb 1.58 wt% hydrogen even at room temperature under 1 MPa H(2). The reduced interdendritic phase is beneficial to shorten the H atom diffusion distance, thus improving the hydrogenation rates. Both the transfer of the hydrogen-absorbing element V to the C14 Laves phase and the increased fraction of the C14 Laves phase lead to the increase of hydrogen storage capacity with the addition of Fe. Moreover, the increased Fe content leads to an increase of average valence electron concentration (VEC), where a larger VEC destabilizes the hydrides, and the desorption temperature of ZrTiVAl(1−x)Fe(x) hydride decreases significantly. |
format | Online Article Text |
id | pubmed-8996367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89963672022-04-13 Enhanced hydrogen storage properties of ZrTiVAl(1−x)Fe(x) high-entropy alloys by modifying the Fe content Ma, Xiangfeng Ding, Xin Chen, Ruirun Gao, Xuefeng Su, Yanqing Cui, Hongzhi RSC Adv Chemistry Lightweight ZrTiVAl high-entropy alloys have shown great potential as a hydrogen storage material due to their appreciable capacity, easy activation, and fast hydrogenation rates. In this study, transition metal Fe was used to improve the hydrogen storage properties of the equimolar ZrTiVAl alloy, and ZrTiVAl(1−x)Fe(x) (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys were prepared to investigate the microstructure evolution and hydrogen storage properties. The results show that the ZrTiVAl(1−x)Fe(x) alloys are composed of a C14 Laves phase and Ti-rich HCP phase. With Fe substituting Al, the fraction of the C14 Laves phase increases and that of the HCP phase decreases. Besides, the interdendritic area fraction reaches the maximum when the Fe ratio is 0.2. The element V transferred to the C14 Laves phase from the HCP phase, which is caused by the strong affinity between V and Fe. The ZrTiVAl(1−x)Fe(x) alloys show enhanced hydrogenation kinetics and capacities. Notably, the ZrTiVFe alloy can reversely absorb 1.58 wt% hydrogen even at room temperature under 1 MPa H(2). The reduced interdendritic phase is beneficial to shorten the H atom diffusion distance, thus improving the hydrogenation rates. Both the transfer of the hydrogen-absorbing element V to the C14 Laves phase and the increased fraction of the C14 Laves phase lead to the increase of hydrogen storage capacity with the addition of Fe. Moreover, the increased Fe content leads to an increase of average valence electron concentration (VEC), where a larger VEC destabilizes the hydrides, and the desorption temperature of ZrTiVAl(1−x)Fe(x) hydride decreases significantly. The Royal Society of Chemistry 2022-04-11 /pmc/articles/PMC8996367/ /pubmed/35425073 http://dx.doi.org/10.1039/d2ra01064j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ma, Xiangfeng Ding, Xin Chen, Ruirun Gao, Xuefeng Su, Yanqing Cui, Hongzhi Enhanced hydrogen storage properties of ZrTiVAl(1−x)Fe(x) high-entropy alloys by modifying the Fe content |
title | Enhanced hydrogen storage properties of ZrTiVAl(1−x)Fe(x) high-entropy alloys by modifying the Fe content |
title_full | Enhanced hydrogen storage properties of ZrTiVAl(1−x)Fe(x) high-entropy alloys by modifying the Fe content |
title_fullStr | Enhanced hydrogen storage properties of ZrTiVAl(1−x)Fe(x) high-entropy alloys by modifying the Fe content |
title_full_unstemmed | Enhanced hydrogen storage properties of ZrTiVAl(1−x)Fe(x) high-entropy alloys by modifying the Fe content |
title_short | Enhanced hydrogen storage properties of ZrTiVAl(1−x)Fe(x) high-entropy alloys by modifying the Fe content |
title_sort | enhanced hydrogen storage properties of zrtival(1−x)fe(x) high-entropy alloys by modifying the fe content |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996367/ https://www.ncbi.nlm.nih.gov/pubmed/35425073 http://dx.doi.org/10.1039/d2ra01064j |
work_keys_str_mv | AT maxiangfeng enhancedhydrogenstoragepropertiesofzrtival1xfexhighentropyalloysbymodifyingthefecontent AT dingxin enhancedhydrogenstoragepropertiesofzrtival1xfexhighentropyalloysbymodifyingthefecontent AT chenruirun enhancedhydrogenstoragepropertiesofzrtival1xfexhighentropyalloysbymodifyingthefecontent AT gaoxuefeng enhancedhydrogenstoragepropertiesofzrtival1xfexhighentropyalloysbymodifyingthefecontent AT suyanqing enhancedhydrogenstoragepropertiesofzrtival1xfexhighentropyalloysbymodifyingthefecontent AT cuihongzhi enhancedhydrogenstoragepropertiesofzrtival1xfexhighentropyalloysbymodifyingthefecontent |