Cargando…
Rejecting Novel Motions in High-Density Myoelectric Pattern Recognition Using Hybrid Neural Networks
The objective of this study is to develop a method for alleviating a novel pattern interference toward achieving a robust myoelectric pattern-recognition control system. To this end, a framework was presented for surface electromyogram (sEMG) pattern classification and novelty detection using hybrid...
Autores principales: | Wu, Le, Chen, Xun, Chen, Xiang, Zhang, Xu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996371/ https://www.ncbi.nlm.nih.gov/pubmed/35418847 http://dx.doi.org/10.3389/fnbot.2022.862193 |
Ejemplares similares
-
Feasibility study on the application of a spiking neural network in myoelectric control systems
por: Sun, Antong, et al.
Publicado: (2023) -
Wavelet Packet Feature Assessment for High-Density Myoelectric Pattern Recognition and Channel Selection toward Stroke Rehabilitation
por: Wang, Dongqing, et al.
Publicado: (2016) -
Ascertaining the optimal myoelectric signal recording duration for pattern recognition based prostheses control
por: Asogbon, Mojisola Grace, et al.
Publicado: (2023) -
Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition
por: Ortiz-Catalan, Max
Publicado: (2015) -
Classification complexity in myoelectric pattern recognition
por: Nilsson, Niclas, et al.
Publicado: (2017)