Cargando…
Accurate prediction of molecular targets using a self-supervised image representation learning framework
The clinical efficacy and safety of a drug is determined by its molecular targets in the human proteome. However, proteome-wide evaluation of all compounds in human, or even animal models, is challenging. In this study, we present an unsupervised pre-training deep learning framework, termed ImageMol...
Autores principales: | Zeng, Xiangxiang, Xiang, Hongxin, Yu, Linhui, Wang, Jianmin, Li, Kenli, Nussinov, Ruth, Cheng, Feixiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996628/ https://www.ncbi.nlm.nih.gov/pubmed/35411337 http://dx.doi.org/10.21203/rs.3.rs-1477870/v1 |
Ejemplares similares
-
A self-supervised domain-general learning framework for human ventral stream representation
por: Konkle, Talia, et al.
Publicado: (2022) -
Self-supervised representation learning for surgical activity recognition
por: Paysan, Daniel, et al.
Publicado: (2021) -
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022) -
A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications
por: Peng, He, et al.
Publicado: (2019) -
Deep generative molecular design reshapes drug discovery
por: Zeng, Xiangxiang, et al.
Publicado: (2022)