Cargando…
Explainable graph neural networks for organic cages
The development of accurate and explicable machine learning models to predict the properties of topologically complex systems is a challenge in materials science. Porous organic cages, a class of polycyclic molecular materials, have potential application in molecular separations, catalysis and encap...
Autores principales: | Yuan, Qi, Szczypiński, Filip T., Jelfs, Kim E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996732/ https://www.ncbi.nlm.nih.gov/pubmed/35515082 http://dx.doi.org/10.1039/d1dd00039j |
Ejemplares similares
-
Unlocking the computational design of metal–organic cages
por: Tarzia, Andrew, et al.
Publicado: (2022) -
Can we predict materials that can be synthesised?
por: Szczypiński, Filip T., et al.
Publicado: (2020) -
Materials Precursor Score: Modeling Chemists’
Intuition for the Synthetic Accessibility of Porous Organic Cage Precursors
por: Bennett, Steven, et al.
Publicado: (2021) -
An evolutionary algorithm for the discovery of porous organic cages
por: Berardo, Enrico, et al.
Publicado: (2018) -
Coarse-grained modelling to predict the packing of porous organic cages
por: Wolpert, Emma H., et al.
Publicado: (2022)