Cargando…

Natural language processing models that automate programming will transform chemistry research and teaching

Natural language processing models have emerged that can generate useable software and automate a number of programming tasks with high fidelity. These tools have yet to have an impact on the chemistry community. Yet, our initial testing demonstrates that this form of artificial intelligence is pois...

Descripción completa

Detalles Bibliográficos
Autores principales: Hocky, Glen M., White, Andrew D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996826/
https://www.ncbi.nlm.nih.gov/pubmed/35515080
http://dx.doi.org/10.1039/d1dd00009h
Descripción
Sumario:Natural language processing models have emerged that can generate useable software and automate a number of programming tasks with high fidelity. These tools have yet to have an impact on the chemistry community. Yet, our initial testing demonstrates that this form of artificial intelligence is poised to transform chemistry and chemical engineering research. Here, we review developments that brought us to this point, examine applications in chemistry, and give our perspective on how this may fundamentally alter research and teaching.