Cargando…
Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications
SIMPLE SUMMARY: With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in ad...
Autores principales: | Preuss, Kiersten, Thach, Nate, Liang, Xiaoying, Baine, Michael, Chen, Justin, Zhang, Chi, Du, Huijing, Yu, Hongfeng, Lin, Chi, Hollingsworth, Michael A., Zheng, Dandan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997008/ https://www.ncbi.nlm.nih.gov/pubmed/35406426 http://dx.doi.org/10.3390/cancers14071654 |
Ejemplares similares
-
Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy
por: Parr, Elsa, et al.
Publicado: (2020) -
Effects of interobserver and interdisciplinary segmentation variabilities on CT-based radiomics for pancreatic cancer
por: Wong, Jeffrey, et al.
Publicado: (2021) -
The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients
por: Baine, Michael, et al.
Publicado: (2021) -
Radiomic feature stability across 4D respiratory phases and its impact on lung tumor prognosis prediction
por: Du, Qian, et al.
Publicado: (2019) -
Associations between Statin/Omega3 Usage and MRI-Based Radiomics Signatures in Prostate Cancer
por: Shi, Yu, et al.
Publicado: (2021)