Cargando…
Machine learning with imaging features to predict the expression of ITGAV, which is a poor prognostic factor derived from transcriptome analysis in pancreatic cancer
Radiogenomics has attracted attention for predicting the molecular biological characteristics of tumors from clinical images, which are originally a collection of numerical values, such as computed tomography (CT) scans. A prediction model using genetic information is constructed using thousands of...
Autores principales: | Iwatate, Yosuke, Yokota, Hajime, Hoshino, Isamu, Ishige, Fumitaka, Kuwayama, Naoki, Itami, Makiko, Mori, Yasukuni, Chiba, Satoshi, Arimitsu, Hidehito, Yanagibashi, Hiroo, Takayama, Wataru, Uno, Takashi, Lin, Jason, Nakamura, Yuki, Tatsumi, Yasutoshi, Shimozato, Osamu, Nagase, Hiroki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997334/ https://www.ncbi.nlm.nih.gov/pubmed/35419611 http://dx.doi.org/10.3892/ijo.2022.5350 |
Ejemplares similares
-
Transcriptomic analysis reveals high ITGB1 expression as a predictor for poor prognosis of pancreatic cancer
por: Iwatate, Yosuke, et al.
Publicado: (2022) -
Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer
por: Iwatate, Yosuke, et al.
Publicado: (2020) -
Prediction of the differences in tumor mutation burden between primary and metastatic lesions by radiogenomics
por: Hoshino, Isamu, et al.
Publicado: (2021) -
MIR1246 in body fluids as a biomarker for pancreatic cancer
por: Ishige, Fumitaka, et al.
Publicado: (2020) -
Applying artificial intelligence using routine clinical data for preoperative diagnosis and prognosis evaluation of gastric cancer
por: Kuwayama, Naoki, et al.
Publicado: (2023)