Cargando…
Novel Blood Vascular Endothelial Subtype-Specific Markers in Human Skin Unearthed by Single-Cell Transcriptomic Profiling
Ample evidence pinpoints the phenotypic diversity of blood vessels (BVs) and site-specific functions of their lining endothelial cells (ECs). We harnessed single-cell RNA sequencing (scRNA-seq) to dissect the molecular heterogeneity of blood vascular endothelial cells (BECs) in healthy adult human s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997372/ https://www.ncbi.nlm.nih.gov/pubmed/35406678 http://dx.doi.org/10.3390/cells11071111 |
Sumario: | Ample evidence pinpoints the phenotypic diversity of blood vessels (BVs) and site-specific functions of their lining endothelial cells (ECs). We harnessed single-cell RNA sequencing (scRNA-seq) to dissect the molecular heterogeneity of blood vascular endothelial cells (BECs) in healthy adult human skin and identified six different subpopulations, signifying arterioles, post-arterial capillaries, pre-venular capillaries, post-capillary venules, venules and collecting venules. Individual BEC subtypes exhibited distinctive transcriptomic landscapes associated with diverse biological pathways. These functionally distinct dermal BV segments were characterized by their unique compositions of conventional and novel markers (e.g., arteriole marker GJA5; arteriole capillary markers ASS1 and S100A4; pre-venular capillary markers SOX17 and PLAUR; venular markers EGR2 and LRG1), many of which have been implicated in vascular remodeling upon inflammatory responses. Immunofluorescence staining of human skin sections and whole-mount skin blocks confirmed the discrete expression of these markers along the blood vascular tree in situ, further corroborating BEC heterogeneity in human skin. Overall, our study molecularly refines individual BV compartments, whilst the identification of novel subtype-specific signatures provides more insights for future studies dissecting the responses of distinct vessel segments under pathological conditions. |
---|