Cargando…
Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis
Vascular inflammation initiated by oxidized lipoproteins drives initiation, progression, and even rupture of atherosclerotic plaques. Yet, to date, no biomarker is directly linked to oxidized lipid-induced vascular inflammation. Reticulocalbin 2 (RCN2) is a key regulator of basal and oxidized lipid-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997427/ https://www.ncbi.nlm.nih.gov/pubmed/35406670 http://dx.doi.org/10.3390/cells11071107 |
_version_ | 1784684701645012992 |
---|---|
author | Li, Jing Taylor, Angela M. Manichaikul, Ani Angle, John F. Shi, Weibin |
author_facet | Li, Jing Taylor, Angela M. Manichaikul, Ani Angle, John F. Shi, Weibin |
author_sort | Li, Jing |
collection | PubMed |
description | Vascular inflammation initiated by oxidized lipoproteins drives initiation, progression, and even rupture of atherosclerotic plaques. Yet, to date, no biomarker is directly linked to oxidized lipid-induced vascular inflammation. Reticulocalbin 2 (RCN2) is a key regulator of basal and oxidized lipid-induced cytokine production in arterial wall cells. We evaluated the potential of circulating RCN2 to identify subjects with or at risk of developing atherosclerosis. Immunohistochemical analysis revealed abundant RCN2 expression in the endothelium and adventitia of normal arteries and in atherosclerotic lesions of both humans and mice. Atherosclerosis-susceptible C57BL/6 (B6) mice had higher plasma Rcn2 levels than resistant C3H mice. High-fat diet feeding raised plasma Rcn2 levels of both strains. In humans, patients with coronary artery disease (CAD) or peripheral artery disease (PAD) showed elevated serum RCN2 levels compared to healthy controls. In a cohort of 92 CAD patients, serum RCN2 exhibited a significant inverse correlation with HDL cholesterol and K+ levels and a trend toward association with white blood cell account, Na+, statin treatment, and diastolic blood pressure. HDL treatment suppressed Rcn2 expression in endothelial cells. This study suggests that circulating RCN2 is a potential non-invasive biomarker for identifying individuals with atherosclerosis and HDL protects against atherosclerosis by downregulation of RCN2 expression in endothelial cells. |
format | Online Article Text |
id | pubmed-8997427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89974272022-04-12 Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis Li, Jing Taylor, Angela M. Manichaikul, Ani Angle, John F. Shi, Weibin Cells Article Vascular inflammation initiated by oxidized lipoproteins drives initiation, progression, and even rupture of atherosclerotic plaques. Yet, to date, no biomarker is directly linked to oxidized lipid-induced vascular inflammation. Reticulocalbin 2 (RCN2) is a key regulator of basal and oxidized lipid-induced cytokine production in arterial wall cells. We evaluated the potential of circulating RCN2 to identify subjects with or at risk of developing atherosclerosis. Immunohistochemical analysis revealed abundant RCN2 expression in the endothelium and adventitia of normal arteries and in atherosclerotic lesions of both humans and mice. Atherosclerosis-susceptible C57BL/6 (B6) mice had higher plasma Rcn2 levels than resistant C3H mice. High-fat diet feeding raised plasma Rcn2 levels of both strains. In humans, patients with coronary artery disease (CAD) or peripheral artery disease (PAD) showed elevated serum RCN2 levels compared to healthy controls. In a cohort of 92 CAD patients, serum RCN2 exhibited a significant inverse correlation with HDL cholesterol and K+ levels and a trend toward association with white blood cell account, Na+, statin treatment, and diastolic blood pressure. HDL treatment suppressed Rcn2 expression in endothelial cells. This study suggests that circulating RCN2 is a potential non-invasive biomarker for identifying individuals with atherosclerosis and HDL protects against atherosclerosis by downregulation of RCN2 expression in endothelial cells. MDPI 2022-03-25 /pmc/articles/PMC8997427/ /pubmed/35406670 http://dx.doi.org/10.3390/cells11071107 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Jing Taylor, Angela M. Manichaikul, Ani Angle, John F. Shi, Weibin Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis |
title | Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis |
title_full | Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis |
title_fullStr | Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis |
title_full_unstemmed | Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis |
title_short | Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis |
title_sort | reticulocalbin 2 as a potential biomarker and therapeutic target for atherosclerosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997427/ https://www.ncbi.nlm.nih.gov/pubmed/35406670 http://dx.doi.org/10.3390/cells11071107 |
work_keys_str_mv | AT lijing reticulocalbin2asapotentialbiomarkerandtherapeutictargetforatherosclerosis AT taylorangelam reticulocalbin2asapotentialbiomarkerandtherapeutictargetforatherosclerosis AT manichaikulani reticulocalbin2asapotentialbiomarkerandtherapeutictargetforatherosclerosis AT anglejohnf reticulocalbin2asapotentialbiomarkerandtherapeutictargetforatherosclerosis AT shiweibin reticulocalbin2asapotentialbiomarkerandtherapeutictargetforatherosclerosis |