Cargando…

Study on Filling Support Design and Ground Pressure Monitoring Scheme for Gob-Side Entry Retention by Roof Cutting and Pressure Relief in High-Gas Thin Coal Seam

To ensure the successful application of roof cutting and pressure relief in the gob, to retain the roadway in a high-gas thin coal seam, by taking the 2109 working face of the Mingxin coal mine as the engineering background, this paper comprehensively analyzes and studies the key parameters of high-...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hui, Zu, Haodong, Zhang, Kanglin, Qian, Jifa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997444/
https://www.ncbi.nlm.nih.gov/pubmed/35409595
http://dx.doi.org/10.3390/ijerph19073913
Descripción
Sumario:To ensure the successful application of roof cutting and pressure relief in the gob, to retain the roadway in a high-gas thin coal seam, by taking the 2109 working face of the Mingxin coal mine as the engineering background, this paper comprehensively analyzes and studies the key parameters of high-water material filling and support and the law of ground pressure behavior. The results show that the high-water material filling body has the characteristics of high strength, rapid resistance increase, strong flexibility and high strength in the later stage, which can meet the requirements for retaining roadway support along the goaf. On this basis, we determined that the water-cement ratio for a high-water material filling body is 1.5:1 and the filling length, height and width each time are 3.6 m, 2.2 m and 1.0 m, respectively. In addition, a ground-pressure monitoring scheme for retaining the roadway along the goaf is put forward and the results show that the displacement of the roof and floor and the deformation of the filling body are both within a reasonable range, which proves high-water material filling support can effectively ensure the stability and integrity of the roof of the gob, thus retaining the roadway in a high-gas thin coal seam.