Cargando…
Nonlinear thermal lensing of high repetition rate ultrafast laser light in plasmonic nano-colloids
We report on experimental observations of phenomenological self-trapping in plasmonic colloids of varying plasmon peaks in the visible/near infrared. A femtosecond (fs) oscillator is used in both pulsed (35 fs, 76 MHz) and continuous wave (cw) operation for comparison. We show that for both modes an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997721/ https://www.ncbi.nlm.nih.gov/pubmed/35879969 http://dx.doi.org/10.1515/nanoph-2021-0775 |
Sumario: | We report on experimental observations of phenomenological self-trapping in plasmonic colloids of varying plasmon peaks in the visible/near infrared. A femtosecond (fs) oscillator is used in both pulsed (35 fs, 76 MHz) and continuous wave (cw) operation for comparison. We show that for both modes and for all examined colloids (and under typically applied external focusing conditions in self-trapping studies in colloidal media) nonlinear propagation is governed by thermal defocusing of the focused beam, which precedes the steady-state regime reached by particle diffusion, even far from the plasmon resonance (or equivalently for non-plasmonic colloids, even for low absorption coefficients). A strategy for the utilization of high repetition fs pulses to mitigate thermal lensing and promote gradient force-induced self-trapping is discussed. Notably, nonlinear thermal lensing is further accompanied by natural convection due to the horizontal configuration of the setup. Under resonant illumination, for both fs and cw cases, we observe mode break-up of the beam profile, most likely due to azimuthal modulation instability. Importantly, time-resolved observations of the break-up indicate that in the fs case, thermal convection heat transfer is reduced in magnitude and significantly decoupled in time from thermal conduction, presumably due to temperature increase confinement near the particles. We anticipate that our findings will trigger interest toward the use of high repetition fs pulses for self-channeling applications in nano-colloids. |
---|