Cargando…
Characteristics and Mechanism of Crayfish Myofibril Protein Gel Deterioration Induced by Autoclaving
Crayfish myofibril protein (CMP) gel deterioration induced by autoclaving was investigated. A series of CMP gels were obtained through treating CMP solutions at different autoclaving conditions from 100 °C/0.1 MPa to 121 °C/0.21 MPa, and then characteristics and the mechanism of gel texture deterior...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8998014/ https://www.ncbi.nlm.nih.gov/pubmed/35407016 http://dx.doi.org/10.3390/foods11070929 |
Sumario: | Crayfish myofibril protein (CMP) gel deterioration induced by autoclaving was investigated. A series of CMP gels were obtained through treating CMP solutions at different autoclaving conditions from 100 °C/0.1 MPa to 121 °C/0.21 MPa, and then characteristics and the mechanism of gel texture deterioration along with the intensification of autoclaving were explored through determining appearance, texture, protein composition, cross-linking forces, degree of hydrolysis, water state, microstructure of the gels, and average particle size of aggregates. When autoclaving was at above 105 °C/0.103 MPa, texture of CMP gel showed a tendency to severely weaken with the intensification of autoclaving (p < 0.05), hydrophobic interaction and aggregation between proteins weakened gradually (p < 0.05), and moderately bound water in the gel decreased and T(22) relaxation time significantly increased (p < 0.05). After heating for 30 min at above 105 °C/0.103 MPa, pores in the microstructure of CMP gel enlarged obviously, and myosin heavy chain (MHC) degraded. It can be concluded that CMP gel deterioration induced by autoclaving was associated with the degradation of MHC and 105 °C might be the critical temperature to ensure good texture of crayfish products. |
---|