Cargando…

Rotamers in Crystal Structures of Xylitol, D-Arabitol and L-Arabitol

Rotamers are stereoisomers produced by rotation (twisting) about σ bonds and are often rapidly interconverting at room temperature. Xylitol—massively produced sweetener—(2R,3r,4S)-pentane-1,2,3,4,5-pentol) forms rotamers from the linear conformer by rotation of a xylitol fragment around the C2–C3 bo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wanat, Monika, Malinska, Maura, Kucia, Malgorzata, Sicinski, Rafal R., Woźniak, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8998848/
https://www.ncbi.nlm.nih.gov/pubmed/35409233
http://dx.doi.org/10.3390/ijms23073875
Descripción
Sumario:Rotamers are stereoisomers produced by rotation (twisting) about σ bonds and are often rapidly interconverting at room temperature. Xylitol—massively produced sweetener—(2R,3r,4S)-pentane-1,2,3,4,5-pentol) forms rotamers from the linear conformer by rotation of a xylitol fragment around the C2–C3 bond (rotamer 1) or the C3–C4 bond (rotamer 2). The rotamers form two distinguishable structures. Small differences in geometry of rotamers of the main carbon chain were confirmed by theoretical calculations; however, they were beyond the capabilities of the X-ray powder diffraction technique due to the almost identical unit cell parameters. In the case of rotamers of similar compounds, the rotations occurred mostly within hydroxyl groups likewise rotations in L-arabitol and D-arabitol, which are discussed in this work. Our results, supported by theoretical calculations, showed that energetic differences are slightly higher for rotamers with rotations within hydroxyl groups instead of a carbon chain.