Cargando…
SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning
Identifying compound-protein (drug-target, DTI) interactions (CPI) accurately is a key step in drug discovery. Including virtual screening and drug reuse, it can significantly reduce the time it takes to identify drug candidates and provide patients with timely and effective treatment. Recently, mor...
Autores principales: | Wang, Xun, Liu, Jiali, Zhang, Chaogang, Wang, Shudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8998983/ https://www.ncbi.nlm.nih.gov/pubmed/35409140 http://dx.doi.org/10.3390/ijms23073780 |
Ejemplares similares
-
MCN-CPI: Multiscale Convolutional Network for Compound–Protein Interaction Prediction
por: Wang, Shuang, et al.
Publicado: (2021) -
CAT-CPI: Combining CNN and transformer to learn compound image features for predicting compound-protein interactions
por: Qian, Ying, et al.
Publicado: (2022) -
Perceiver CPI: a nested cross-attention network for compound–protein interaction prediction
por: Nguyen, Ngoc-Quang, et al.
Publicado: (2022) -
PMF-CPI: assessing drug selectivity with a pretrained multi-functional model for compound–protein interactions
por: Song, Nan, et al.
Publicado: (2023) -
DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening
por: Wan, Fangping, et al.
Publicado: (2019)