Cargando…

High-Value Chemicals from Electrocatalytic Depolymerization of Lignin: Challenges and Opportunities

Lignocellulosic biomass is renewable and one of the most abundant sources for the production of high-value chemicals, materials, and fuels. It is of immense importance to develop new efficient technologies for the industrial production of chemicals by utilizing renewable resources. Lignocellulosic b...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayub, Rabia, Raheel, Ahmad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999055/
https://www.ncbi.nlm.nih.gov/pubmed/35409138
http://dx.doi.org/10.3390/ijms23073767
Descripción
Sumario:Lignocellulosic biomass is renewable and one of the most abundant sources for the production of high-value chemicals, materials, and fuels. It is of immense importance to develop new efficient technologies for the industrial production of chemicals by utilizing renewable resources. Lignocellulosic biomass can potentially replace fossil-based chemistries. The production of fuel and chemicals from lignin powered by renewable electricity under ambient temperatures and pressures enables a more sustainable way to obtain high-value chemicals. More specifically, in a sustainable biorefinery, it is essential to valorize lignin to enhance biomass transformation technology and increase the overall economy of the process. Strategies regarding electrocatalytic approaches as a way to valorize or depolymerize lignin have attracted significant interest from growing scientific communities over the recent decades. This review presents a comprehensive overview of the electrocatalytic methods for depolymerization of lignocellulosic biomass with an emphasis on untargeted depolymerization as well as the selective and targeted mild synthesis of high-value chemicals. Electrocatalytic cleavage of model compounds and further electrochemical upgrading of bio-oils are discussed. Finally, some insights into current challenges and limitations associated with this approach are also summarized.