Cargando…
Single Cell Self-Paced Clustering with Transcriptome Sequencing Data
Single cell RNA sequencing (scRNA-seq) allows researchers to explore tissue heterogeneity, distinguish unusual cell identities, and find novel cellular subtypes by providing transcriptome profiling for individual cells. Clustering analysis is usually used to predict cell class assignments and infer...
Autores principales: | Zhao, Peng, Xu, Zenglin, Chen, Junjie, Ren, Yazhou, King, Irwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999118/ https://www.ncbi.nlm.nih.gov/pubmed/35409258 http://dx.doi.org/10.3390/ijms23073900 |
Ejemplares similares
-
Deep soft K-means clustering with self-training for single-cell RNA sequence data
por: Chen, Liang, et al.
Publicado: (2020) -
VPAC: Variational projection for accurate clustering of single-cell transcriptomic data
por: Chen, Shengquan, et al.
Publicado: (2019) -
Single-Cell Transcriptome Profiling Simulation Reveals the Impact of Sequencing Parameters and Algorithms on Clustering
por: Liu, Yunhe, et al.
Publicado: (2021) -
Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data
por: Liu, Wei, et al.
Publicado: (2022) -
Single trial prediction of self-paced reaching directions from EEG signals
por: Lew, Eileen Y. L., et al.
Publicado: (2014)