Cargando…
Machine Learning Algorithms: Prediction and Feature Selection for Clinical Refracture after Surgically Treated Fragility Fracture
Background: The number of patients with fragility fracture has been increasing. Although the increasing number of patients with fragility fracture increased the rate of fracture (refracture), the causes of refracture are multifactorial, and its predictors are still not clarified. In this issue, we c...
Autores principales: | Shimizu, Hirokazu, Enda, Ken, Shimizu, Tomohiro, Ishida, Yusuke, Ishizu, Hotaka, Ise, Koki, Tanaka, Shinya, Iwasaki, Norimasa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999234/ https://www.ncbi.nlm.nih.gov/pubmed/35407629 http://dx.doi.org/10.3390/jcm11072021 |
Ejemplares similares
-
Secondary fracture rates and risk factors 1 year after a proximal femoral fracture under FLS
por: Ishizu, Hotaka, et al.
Publicado: (2023) -
Predictors of cartilage degeneration in patients with subchondral insufficiency fracture of the femoral head: a retrospective study
por: Shimizu, Tomohiro, et al.
Publicado: (2020) -
Risk factors for refracture after proximal femur fragility fracture
por: Lourenço, Beatriz C., et al.
Publicado: (2023) -
Bone strain index in the prediction of vertebral fragility refracture
por: Ulivieri, Fabio Massimo, et al.
Publicado: (2020) -
Anatomical and Simulation Studies Based on Three-Dimensional-Computed Tomography Image Reconstruction of Femoral Offset
por: Shimizu, Tomohiro, et al.
Publicado: (2023)