Cargando…
Investigation of the Initial Corrosion Destruction of a Metal Matrix around Different Non-Metallic Inclusions on Surfaces of Pipeline Steels
Typical non-metallic inclusions in two industrial low-carbon steels for oil pipelines were investigated as three-dimensional objects on film filters after electrolytic extraction and filtration of metal samples. A method of soft chemical extraction using a 10%AA electrolyte was used to study the ini...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999237/ https://www.ncbi.nlm.nih.gov/pubmed/35407861 http://dx.doi.org/10.3390/ma15072530 |
Sumario: | Typical non-metallic inclusions in two industrial low-carbon steels for oil pipelines were investigated as three-dimensional objects on film filters after electrolytic extraction and filtration of metal samples. A method of soft chemical extraction using a 10%AA electrolyte was used to study the initial corrosion process in the steel matrix surrounding various non-metallic inclusions. To determine and compare “corrosive” inclusions and their influence on the initial stages of corrosion of the adjacent layer of the steel matrix, quantitative parameters (such as the diameter of the corrosion crater (D(cr)) and pit (D(pit)), and the relative dissolution coefficient of the metal matrix (KD) around various inclusions) were determined after chemical extraction. It was found that CaO-Al(2)O(3)-MgO oxides and TiN inclusions did not cause an initial corrosion of the steel matrix surrounding these inclusions. However, tensile stresses in the steel matrix occurred around CaS inclusions (or complex inclusions containing a CaS phase), which contributed to the initiation of corrosion around these inclusions. |
---|