Cargando…
Microstructure and Antimicrobial Properties of Zr-Cu-Ti Thin-Film Metallic Glass Deposited Using High-Power Impulse Magnetron Sputtering
Zr-Cu based thin-film metallic glass (TFMG) has good glass-forming ability and the addition of a third element can create a chaotic system capable of inhibiting the nucleation and growth of crystals. This study focused on TFMGs made with Zr, Cu, and Ti in various compositions deposited via high-impu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999468/ https://www.ncbi.nlm.nih.gov/pubmed/35407795 http://dx.doi.org/10.3390/ma15072461 |
Sumario: | Zr-Cu based thin-film metallic glass (TFMG) has good glass-forming ability and the addition of a third element can create a chaotic system capable of inhibiting the nucleation and growth of crystals. This study focused on TFMGs made with Zr, Cu, and Ti in various compositions deposited via high-impulse magnetron sputtering on silicon and 304 stainless-steel substrates. Detailed analysis was performed on the microstructure and surface characteristics of the resulting coatings. Transmission electron microscopy revealed that the multilayer structure changed to a nanocrystalline structure similar to an amorphous coating. The excellent hydrophobicity of Zr-Cu-Ti TFMGs can be attributed to their ultra-smooth surface without any grain boundaries. The excellent antimicrobial effects can be attributed to a hydrophobic surface resisting cell adhesion and the presence of copper ions, which are lethal to microbes. |
---|