Cargando…

Eco-Friendly Incorporation of Crumb Rubber and Waste Bagasse Ash in Bituminous Concrete Mix

The consumption of waste materials in the construction sector is a sustainable approach that helps in reducing the environmental pollution and decreases the construction cost. The present research work emphasizes the mechanical properties of bituminous concrete mix prepared with crumb rubber (CR) an...

Descripción completa

Detalles Bibliográficos
Autores principales: Ullah, Sheraz, Shah, Muhammad Izhar, Alqurashi, Muwaffaq, Javed, Muhammad Faisal, Dawood, Osama, Aslam, Fahid, Tariq, Muhammad Atiq Ur Rehman, Hussain, Enas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999489/
https://www.ncbi.nlm.nih.gov/pubmed/35407841
http://dx.doi.org/10.3390/ma15072509
Descripción
Sumario:The consumption of waste materials in the construction sector is a sustainable approach that helps in reducing the environmental pollution and decreases the construction cost. The present research work emphasizes the mechanical properties of bituminous concrete mix prepared with crumb rubber (CR) and waste sugarcane bagasse ash (SCBA). For the preparation of bituminous concrete mix specimens with CR and SCBA, the effective bitumen content was determined using the Marshall Mix design method. A total of 15 bituminous concrete mix specimens with 4%, 4.5%, 5%, 5.5% and 6% of bitumen content were prepared, and the effective bitumen content turned out to be 4.7%. The effect of five different CR samples of 2%, 4%, 6%, 8% and 10% by weight of total mix and SCBA samples of 25%, 50%, 75% and 100% by weight of filler were investigated on the performance of bituminous concrete. A total of 180 samples with different percentages of CR and SCBA were tested for indirect tensile strength (ITS) and Marshall Stability, and the results were compared with conventional bituminous concrete mix. It was observed that the stability values rose with an increase in CR percentage up to 6%, while the flow values rose as the percentage of SCBA increased in the mix. Maximum ITS results were observed at 4% CR and 25% SCBA replacement levels. However, a decrease in stability and ITS result was observed as the percentages of CR and SCBA increased beyond 4% and 25%, respectively. We concluded that the optimum CR and SCBA content of 4% and 25%, respectively, can be effectively used as a sustainable alternative in bituminous concrete mix.