Cargando…

Design and Nonadiabatic Photoisomerization Dynamics Study of a Three-Stroke Light-Driven Molecular Rotary Motor

Working cycle of conventional light-driven molecular rotary motors (LDMRMs), especially Feringa-type motors, usually have four steps, two photoisomerization steps, and two thermal helix inversion (THI) steps. THI steps hinder the ability of the motor to operate at lower temperatures and limit the ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jianzheng, Yang, Sujie, Zhao, Di, Jiang, Chenwei, Lan, Zhenggang, Li, Fuli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999534/
https://www.ncbi.nlm.nih.gov/pubmed/35409268
http://dx.doi.org/10.3390/ijms23073908
Descripción
Sumario:Working cycle of conventional light-driven molecular rotary motors (LDMRMs), especially Feringa-type motors, usually have four steps, two photoisomerization steps, and two thermal helix inversion (THI) steps. THI steps hinder the ability of the motor to operate at lower temperatures and limit the rotation speed of LDMRMs. A three-stroke LDMRM, 2-(2,7-dimethyl-2,3-dihydro-1H-inden-1-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDIY), is proposed, which is capable of completing an unidirectional rotation by two photoisomerization steps and one thermal helix inversion step at room temperature. On the basis of trajectory surface-hopping simulation at the semi-empirical OM2/MRCI level, the EP→ZP and ZP→EM nonadiabatic photoisomerization dynamics of DDIY were systematically analyzed. Quantum yields of EP→ZP and ZP→EM photoisomerization of DDIY are ca. 34% and 18%, respectively. Both EP→ZP and ZP→EM photoisomerization processes occur on an ultrafast time scale (ca. 100–300 fs). This three-stroke LDMRM may stimulate further research for the development of new families of more efficient LDMRMs.