Cargando…
Alternating Current Field Effects in Atomically Ferroelectric Ultrathin Films
In this work, atomically K(1−x)Na(x)NbO(3) thin films are taken as examples to investigate the reversible and irreversible effects in a horizon plane, i.e., the changes of domain structures, phase states, free energies, etc., under a z-axis alternating current field via a phase-field method. The sim...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999760/ https://www.ncbi.nlm.nih.gov/pubmed/35407839 http://dx.doi.org/10.3390/ma15072506 |
Sumario: | In this work, atomically K(1−x)Na(x)NbO(3) thin films are taken as examples to investigate the reversible and irreversible effects in a horizon plane, i.e., the changes of domain structures, phase states, free energies, etc., under a z-axis alternating current field via a phase-field method. The simulation results show the driving forces during the charging and discharging process, where there is a variation for the angles of the domain walls from 180° to 90° (and then an increase to 135°), which are the external electric field and domain wall evolution, respectively. As for the phase states, there is a transformation between the orthorhombic and rhombohedral phases which can’t be explained by the traditional polarization switching theory. This work provides a reasonable understanding of the alternating current field effect, which is essential in information and energy storage. |
---|