Cargando…
Comparison of LC-MS and LC-DAD Methods of Detecting Abused Piperazine Designer Drugs
Recreational use of piperazine designer drugs is a serious threat to human health. These compounds act on the body in a similar fashion to illegal drugs. They induce psychostimulatory effects as well as visual and auditory hallucinations to varying degrees. In many cases of poisoning and deaths, the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999770/ https://www.ncbi.nlm.nih.gov/pubmed/35407366 http://dx.doi.org/10.3390/jcm11071758 |
Sumario: | Recreational use of piperazine designer drugs is a serious threat to human health. These compounds act on the body in a similar fashion to illegal drugs. They induce psychostimulatory effects as well as visual and auditory hallucinations to varying degrees. In many cases of poisoning and deaths, the presence of two or even several psychoactive substances have been demonstrated. Piperazine derivatives are often found in such mixtures and pose a great analytical problem during their identification. Additionally, some piperazine derivatives can be detected in biological material as a result of metabolic changes to related drugs. Therefore, it is necessary to correctly identify these compounds and ensure repeatability of determinations. This article presents a comparison of the methods used to detect abused piperazine designer drugs using liquid chromatography in combination with a diode-array detector (LC-DAD) or mass spectrometer (LC-MS). Each of methods can be used independently for determinations, obtaining reliable results in a short time of analysis. These methods can also complement each other, providing qualitative and quantitative confirmation of results. The proposed methods provide analytical confirmation of poisoning and may be helpful in toxicological diagnostics. |
---|