Cargando…
Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation
The incorporation of inorganic oxide fillers imparts superior dielectric properties in silicone rubber for high-voltage insulation. However, the dielectric characteristics are influenced by the mechanical stress. The effects of ramped compression on the dielectric properties of neat silicone rubber...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999780/ https://www.ncbi.nlm.nih.gov/pubmed/35407676 http://dx.doi.org/10.3390/ma15072343 |
_version_ | 1784685272152145920 |
---|---|
author | Raza, M. Hassan Butt, Safi Ullah Khattak, Abraiz Alahmadi, Ahmad Aziz |
author_facet | Raza, M. Hassan Butt, Safi Ullah Khattak, Abraiz Alahmadi, Ahmad Aziz |
author_sort | Raza, M. Hassan |
collection | PubMed |
description | The incorporation of inorganic oxide fillers imparts superior dielectric properties in silicone rubber for high-voltage insulation. However, the dielectric characteristics are influenced by the mechanical stress. The effects of ramped compression on the dielectric properties of neat silicone rubber (NSiR), 15% SiO(2) microcomposite (SSMC), 15% alumina trihydrate (ATH) microcomposite (SAMC) and 10% ATH + 2% SiO(2) hybrid composite (SMNC) are presented in this study. The dielectric constant and dissipation factor were measured before and after each compression especially in the frequency range of 50 kHz to 2MHz. Before the compression, SSMC expressed the highest dielectric constant of 4.44 followed by SMNC and SAMC. After the compression cycle, SAMC expressed a better dielectric behavior exhibiting dielectric constant of 7.19 and a dissipation factor of 0.01164. Overall, SAMC expressed better dielectric response before and after compression cycle with dielectric constant and dissipation factor in admissible ranges. |
format | Online Article Text |
id | pubmed-8999780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89997802022-04-12 Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation Raza, M. Hassan Butt, Safi Ullah Khattak, Abraiz Alahmadi, Ahmad Aziz Materials (Basel) Article The incorporation of inorganic oxide fillers imparts superior dielectric properties in silicone rubber for high-voltage insulation. However, the dielectric characteristics are influenced by the mechanical stress. The effects of ramped compression on the dielectric properties of neat silicone rubber (NSiR), 15% SiO(2) microcomposite (SSMC), 15% alumina trihydrate (ATH) microcomposite (SAMC) and 10% ATH + 2% SiO(2) hybrid composite (SMNC) are presented in this study. The dielectric constant and dissipation factor were measured before and after each compression especially in the frequency range of 50 kHz to 2MHz. Before the compression, SSMC expressed the highest dielectric constant of 4.44 followed by SMNC and SAMC. After the compression cycle, SAMC expressed a better dielectric behavior exhibiting dielectric constant of 7.19 and a dissipation factor of 0.01164. Overall, SAMC expressed better dielectric response before and after compression cycle with dielectric constant and dissipation factor in admissible ranges. MDPI 2022-03-22 /pmc/articles/PMC8999780/ /pubmed/35407676 http://dx.doi.org/10.3390/ma15072343 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Raza, M. Hassan Butt, Safi Ullah Khattak, Abraiz Alahmadi, Ahmad Aziz Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation |
title | Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation |
title_full | Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation |
title_fullStr | Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation |
title_full_unstemmed | Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation |
title_short | Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation |
title_sort | investigation of ramped compression effect on the dielectric properties of silicone rubber composites for the coating of high-voltage insulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999780/ https://www.ncbi.nlm.nih.gov/pubmed/35407676 http://dx.doi.org/10.3390/ma15072343 |
work_keys_str_mv | AT razamhassan investigationoframpedcompressioneffectonthedielectricpropertiesofsiliconerubbercompositesforthecoatingofhighvoltageinsulation AT buttsafiullah investigationoframpedcompressioneffectonthedielectricpropertiesofsiliconerubbercompositesforthecoatingofhighvoltageinsulation AT khattakabraiz investigationoframpedcompressioneffectonthedielectricpropertiesofsiliconerubbercompositesforthecoatingofhighvoltageinsulation AT alahmadiahmadaziz investigationoframpedcompressioneffectonthedielectricpropertiesofsiliconerubbercompositesforthecoatingofhighvoltageinsulation |