Cargando…

Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials—A Short Review

Shot peening is a dynamically developing surface treatment used to improve the surface properties modified by tool, impact, microblasting, or shot action. This paper reviews the basic information regarding shot peening methods. The peening processes and effects of the shot peening and cavitation pee...

Descripción completa

Detalles Bibliográficos
Autores principales: Świetlicki, Aleksander, Szala, Mirosław, Walczak, Mariusz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999841/
https://www.ncbi.nlm.nih.gov/pubmed/35407808
http://dx.doi.org/10.3390/ma15072476
Descripción
Sumario:Shot peening is a dynamically developing surface treatment used to improve the surface properties modified by tool, impact, microblasting, or shot action. This paper reviews the basic information regarding shot peening methods. The peening processes and effects of the shot peening and cavitation peening treatments on the surface layer properties of metallic components are analysed. Moreover, the effects of peening on the operational performance of metallic materials are summarized. Shot peening is generally applied to reduce the surface roughness, increase the hardness, and densify the surface layer microstructure, which leads to work hardening effects. In addition, the residual compressive stresses introduced into the material have a beneficial effect on the performance of the surface layer. Therefore, peening can be beneficial for metallic structures prone to fatigue, corrosion, and wear. Recently, cavitation peening has been increasingly developed. This review paper suggests that most research on cavitation peening omits the treatment of additively manufactured metallic materials. Furthermore, no published studies combine shot peening and cavitation peening in one hybrid process, which could synthesize the benefits of both peening processes. Moreover, there is a need to investigate the effects of peening, especially cavitation peening and hybrid peening, on the anti-wear and corrosion performance of additively manufactured metallic materials. Therefore, the literature gap leading to the scope of future work is also included.