Cargando…
In Situ Tungsten Carbide Formation in Nanostructured Copper Matrix Composite Using Mechanical Alloying and Sintering
In this study, an in situ nanostructured copper tungsten carbide composite was synthesized by mechanical alloying (MA) and the powder metallurgy route. The microstructure and phase changes of the composite were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999870/ https://www.ncbi.nlm.nih.gov/pubmed/35407674 http://dx.doi.org/10.3390/ma15072340 |
Sumario: | In this study, an in situ nanostructured copper tungsten carbide composite was synthesized by mechanical alloying (MA) and the powder metallurgy route. The microstructure and phase changes of the composite were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Tungsten carbide phases (WC and W(2)C) were only present after MA and combination of sintering. Higher energy associated with a longer milling time was beneficial for the formation of WC. Formation of W(2)C and WC resulted from internal refinement due to heavy plastic deformation in the composite. The solubility of the phases in the as-milled and sintered composite was described by the changes of the lattice parameter of Cu. Chemical analysis of the surface of a composite of W 4f and C 1s revealed that the increased defects introduced by MA affect the atomic binding of the W-C interaction. |
---|