Cargando…
Magneto-Thermoelastic Response in an Unbounded Medium Containing a Spherical Hole via Multi-Time-Derivative Thermoelasticity Theories
This article introduces magneto-thermoelastic exchanges in an unbounded medium with a spherical cavity. A refined multi-time-derivative dual-phase-lag thermoelasticity model is applied for this reason. The surface of the spherical hole is considered traction-free and under both constant heating and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999892/ https://www.ncbi.nlm.nih.gov/pubmed/35407764 http://dx.doi.org/10.3390/ma15072432 |
Sumario: | This article introduces magneto-thermoelastic exchanges in an unbounded medium with a spherical cavity. A refined multi-time-derivative dual-phase-lag thermoelasticity model is applied for this reason. The surface of the spherical hole is considered traction-free and under both constant heating and external magnetic field. A generalized magneto-thermoelastic coupled solution is developed utilizing Laplace’s transform. The field variables are shown graphically and examined to demonstrate the impacts of the magnetic field, phase-lags, and other parameters on the field quantities. The present theory is examined to assess its validity including comparison with the existing literature. |
---|