Cargando…
An Alternative Digital Image Correlation-Based Experimental Approach to Estimate Fracture Parameters in Fibrous Soft Materials
One of the main challenges in experimental fracture mechanics is to correctly estimate fracture parameters of a nonhomogeneous and nonlinear material under large deformation. The crack tip detection is strongly affected by fibers at crack tip, leading to inaccurate measures. To overcome this limitat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999918/ https://www.ncbi.nlm.nih.gov/pubmed/35407748 http://dx.doi.org/10.3390/ma15072413 |
Sumario: | One of the main challenges in experimental fracture mechanics is to correctly estimate fracture parameters of a nonhomogeneous and nonlinear material under large deformation. The crack tip detection is strongly affected by fibers at crack tip, leading to inaccurate measures. To overcome this limitation, a novel methodology based on the Digital Image Correlation (DIC) method for crack tip detection of fibrous soft composites is proposed in this work. The unidirectional composite was manufactured using a matrix of polydimethylsiloxane reinforced with a single layer of extensible cotton knit fabric. For two different fiber orientations, the crack growth ([Formula: see text]), Crack Tip Opening Displacement (CTOD) and Crack Tip Opening Angle (CTOA) were determined using pure shear specimens under mode I fracture. A consistent estimation of fracture parameters was obtained. The location of the crack tip position during the fracture test using the DIC-based methodology was validated against a visual inspection approach. Results indicated that the DIC-based methodology is easily replicable, precise and robust. |
---|