Cargando…

Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence

Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applica...

Descripción completa

Detalles Bibliográficos
Autores principales: Alon, Haguy, Vitoshkin, Helena, Ziv, Carmit, Gunamalai, Lavanya, Sinitsa, Sergey, Kleiman, Maya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000080/
https://www.ncbi.nlm.nih.gov/pubmed/35407860
http://dx.doi.org/10.3390/ma15072526
_version_ 1784685346178465792
author Alon, Haguy
Vitoshkin, Helena
Ziv, Carmit
Gunamalai, Lavanya
Sinitsa, Sergey
Kleiman, Maya
author_facet Alon, Haguy
Vitoshkin, Helena
Ziv, Carmit
Gunamalai, Lavanya
Sinitsa, Sergey
Kleiman, Maya
author_sort Alon, Haguy
collection PubMed
description Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applications such as post-harvest packing materials and greenhouse cover screens. Phytopathogenic fungi such as Botrytis cinerea are a major concern for agricultural systems. These molds are spread by airborne conidia that contaminate surfaces and infect plants and fresh produce, causing significant losses. The research examined the adhesive role of microstructures of natural and synthetic surfaces and assessed the feasibility of structured biomimetic surfaces to easily wash off fungal conidia. Soft lithography was used to create polydimethylsiloxane (PDMS) replications of Solanum lycopersicum (tomato) and Colocasia esculenta (elephant ear) leaves. Conidia of B. cinerea were applied to natural surfaces for a washing procedure and the ratios between applied and remaining conidia were compared using microscopy imaging. The obtained results confirmed the hypothesis that the dust-repellent C. esculenta leaves have a higher conidia-repellency compared to tomato leaves which are known for their high sensitivities to phytopathogenic molds. This study found that microstructure replication does not mimic conidia repellency found in nature and that conidia repellency is affected by a mix of parameters, including microstructure and hydrophobicity. To examine the effect of hydrophobicity, the study included measurements and analyses of apparent contact angles of natural and synthetic surfaces including activated (hydrophilic) surfaces. No correlation was found between the surface apparent contact angle and conidia repellency ability, demonstrating variation in washing capability correlated to microstructure and hydrophobicity. It was also found that a microscale sub-surface (tomato trichromes) had a high conidia-repelling capability, demonstrating an important role of non-superhydrophobic microstructures.
format Online
Article
Text
id pubmed-9000080
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90000802022-04-12 Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence Alon, Haguy Vitoshkin, Helena Ziv, Carmit Gunamalai, Lavanya Sinitsa, Sergey Kleiman, Maya Materials (Basel) Article Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applications such as post-harvest packing materials and greenhouse cover screens. Phytopathogenic fungi such as Botrytis cinerea are a major concern for agricultural systems. These molds are spread by airborne conidia that contaminate surfaces and infect plants and fresh produce, causing significant losses. The research examined the adhesive role of microstructures of natural and synthetic surfaces and assessed the feasibility of structured biomimetic surfaces to easily wash off fungal conidia. Soft lithography was used to create polydimethylsiloxane (PDMS) replications of Solanum lycopersicum (tomato) and Colocasia esculenta (elephant ear) leaves. Conidia of B. cinerea were applied to natural surfaces for a washing procedure and the ratios between applied and remaining conidia were compared using microscopy imaging. The obtained results confirmed the hypothesis that the dust-repellent C. esculenta leaves have a higher conidia-repellency compared to tomato leaves which are known for their high sensitivities to phytopathogenic molds. This study found that microstructure replication does not mimic conidia repellency found in nature and that conidia repellency is affected by a mix of parameters, including microstructure and hydrophobicity. To examine the effect of hydrophobicity, the study included measurements and analyses of apparent contact angles of natural and synthetic surfaces including activated (hydrophilic) surfaces. No correlation was found between the surface apparent contact angle and conidia repellency ability, demonstrating variation in washing capability correlated to microstructure and hydrophobicity. It was also found that a microscale sub-surface (tomato trichromes) had a high conidia-repelling capability, demonstrating an important role of non-superhydrophobic microstructures. MDPI 2022-03-30 /pmc/articles/PMC9000080/ /pubmed/35407860 http://dx.doi.org/10.3390/ma15072526 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alon, Haguy
Vitoshkin, Helena
Ziv, Carmit
Gunamalai, Lavanya
Sinitsa, Sergey
Kleiman, Maya
Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence
title Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence
title_full Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence
title_fullStr Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence
title_full_unstemmed Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence
title_short Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence
title_sort self-cleaning biomimetic surfaces—the effect of microstructure and hydrophobicity on conidia repellence
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000080/
https://www.ncbi.nlm.nih.gov/pubmed/35407860
http://dx.doi.org/10.3390/ma15072526
work_keys_str_mv AT alonhaguy selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence
AT vitoshkinhelena selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence
AT zivcarmit selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence
AT gunamalailavanya selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence
AT sinitsasergey selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence
AT kleimanmaya selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence