Cargando…
Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence
Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applica...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000080/ https://www.ncbi.nlm.nih.gov/pubmed/35407860 http://dx.doi.org/10.3390/ma15072526 |
_version_ | 1784685346178465792 |
---|---|
author | Alon, Haguy Vitoshkin, Helena Ziv, Carmit Gunamalai, Lavanya Sinitsa, Sergey Kleiman, Maya |
author_facet | Alon, Haguy Vitoshkin, Helena Ziv, Carmit Gunamalai, Lavanya Sinitsa, Sergey Kleiman, Maya |
author_sort | Alon, Haguy |
collection | PubMed |
description | Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applications such as post-harvest packing materials and greenhouse cover screens. Phytopathogenic fungi such as Botrytis cinerea are a major concern for agricultural systems. These molds are spread by airborne conidia that contaminate surfaces and infect plants and fresh produce, causing significant losses. The research examined the adhesive role of microstructures of natural and synthetic surfaces and assessed the feasibility of structured biomimetic surfaces to easily wash off fungal conidia. Soft lithography was used to create polydimethylsiloxane (PDMS) replications of Solanum lycopersicum (tomato) and Colocasia esculenta (elephant ear) leaves. Conidia of B. cinerea were applied to natural surfaces for a washing procedure and the ratios between applied and remaining conidia were compared using microscopy imaging. The obtained results confirmed the hypothesis that the dust-repellent C. esculenta leaves have a higher conidia-repellency compared to tomato leaves which are known for their high sensitivities to phytopathogenic molds. This study found that microstructure replication does not mimic conidia repellency found in nature and that conidia repellency is affected by a mix of parameters, including microstructure and hydrophobicity. To examine the effect of hydrophobicity, the study included measurements and analyses of apparent contact angles of natural and synthetic surfaces including activated (hydrophilic) surfaces. No correlation was found between the surface apparent contact angle and conidia repellency ability, demonstrating variation in washing capability correlated to microstructure and hydrophobicity. It was also found that a microscale sub-surface (tomato trichromes) had a high conidia-repelling capability, demonstrating an important role of non-superhydrophobic microstructures. |
format | Online Article Text |
id | pubmed-9000080 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90000802022-04-12 Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence Alon, Haguy Vitoshkin, Helena Ziv, Carmit Gunamalai, Lavanya Sinitsa, Sergey Kleiman, Maya Materials (Basel) Article Modification of surface structure for the promotion of food safety and health protection is a technology of interest among many industries. With this study, we aimed specifically to develop a tenable solution for the fabrication of self-cleaning biomimetic surface structures for agricultural applications such as post-harvest packing materials and greenhouse cover screens. Phytopathogenic fungi such as Botrytis cinerea are a major concern for agricultural systems. These molds are spread by airborne conidia that contaminate surfaces and infect plants and fresh produce, causing significant losses. The research examined the adhesive role of microstructures of natural and synthetic surfaces and assessed the feasibility of structured biomimetic surfaces to easily wash off fungal conidia. Soft lithography was used to create polydimethylsiloxane (PDMS) replications of Solanum lycopersicum (tomato) and Colocasia esculenta (elephant ear) leaves. Conidia of B. cinerea were applied to natural surfaces for a washing procedure and the ratios between applied and remaining conidia were compared using microscopy imaging. The obtained results confirmed the hypothesis that the dust-repellent C. esculenta leaves have a higher conidia-repellency compared to tomato leaves which are known for their high sensitivities to phytopathogenic molds. This study found that microstructure replication does not mimic conidia repellency found in nature and that conidia repellency is affected by a mix of parameters, including microstructure and hydrophobicity. To examine the effect of hydrophobicity, the study included measurements and analyses of apparent contact angles of natural and synthetic surfaces including activated (hydrophilic) surfaces. No correlation was found between the surface apparent contact angle and conidia repellency ability, demonstrating variation in washing capability correlated to microstructure and hydrophobicity. It was also found that a microscale sub-surface (tomato trichromes) had a high conidia-repelling capability, demonstrating an important role of non-superhydrophobic microstructures. MDPI 2022-03-30 /pmc/articles/PMC9000080/ /pubmed/35407860 http://dx.doi.org/10.3390/ma15072526 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alon, Haguy Vitoshkin, Helena Ziv, Carmit Gunamalai, Lavanya Sinitsa, Sergey Kleiman, Maya Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence |
title | Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence |
title_full | Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence |
title_fullStr | Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence |
title_full_unstemmed | Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence |
title_short | Self-Cleaning Biomimetic Surfaces—The Effect of Microstructure and Hydrophobicity on Conidia Repellence |
title_sort | self-cleaning biomimetic surfaces—the effect of microstructure and hydrophobicity on conidia repellence |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000080/ https://www.ncbi.nlm.nih.gov/pubmed/35407860 http://dx.doi.org/10.3390/ma15072526 |
work_keys_str_mv | AT alonhaguy selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence AT vitoshkinhelena selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence AT zivcarmit selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence AT gunamalailavanya selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence AT sinitsasergey selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence AT kleimanmaya selfcleaningbiomimeticsurfacestheeffectofmicrostructureandhydrophobicityonconidiarepellence |