Cargando…
RNA editing increases the nucleotide diversity of SARS-CoV-2 in human host cells
SARS-CoV-2 is a positive-sense, single-stranded RNA virus responsible for the COVID-19 pandemic. It remains unclear whether and to what extent the virus in human host cells undergoes RNA editing, a major RNA modification mechanism. Here we perform a robust bioinformatic analysis of metatranscriptomi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000099/ https://www.ncbi.nlm.nih.gov/pubmed/35353808 http://dx.doi.org/10.1371/journal.pgen.1010130 |
Sumario: | SARS-CoV-2 is a positive-sense, single-stranded RNA virus responsible for the COVID-19 pandemic. It remains unclear whether and to what extent the virus in human host cells undergoes RNA editing, a major RNA modification mechanism. Here we perform a robust bioinformatic analysis of metatranscriptomic data from multiple bronchoalveolar lavage fluid samples of COVID-19 patients, revealing an appreciable number of A-to-I RNA editing candidate sites in SARS-CoV-2. We confirm the enrichment of A-to-I RNA editing signals at these candidate sites through evaluating four characteristics specific to RNA editing: the inferred RNA editing sites exhibit (i) stronger ADAR1 binding affinity predicted by a deep-learning model built from ADAR1 CLIP-seq data, (ii) decreased editing levels in ADAR1-inhibited human lung cells, (iii) local clustering patterns, and (iv) higher RNA secondary structure propensity. Our results have critical implications in understanding the evolution of SARS-CoV-2 as well as in COVID-19 research, such as phylogenetic analysis and vaccine development. |
---|