Cargando…
In Situ Intermetallics-Reinforced Composite Prepared Using Multi-Pass Friction Stir Processing of Copper Powder on a Ti6Al4V Alloy
Multi-pass friction stir processing (FSP) was used to obtain a titanium alloy/copper hybrid composite layer by intermixing copper powder with a Ti6Al4V alloy. A macrostructurally inhomogeneous stir zone was obtained with both its top and middle parts composed of fine dynamically recrystallized α- an...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000171/ https://www.ncbi.nlm.nih.gov/pubmed/35407759 http://dx.doi.org/10.3390/ma15072428 |
Sumario: | Multi-pass friction stir processing (FSP) was used to obtain a titanium alloy/copper hybrid composite layer by intermixing copper powder with a Ti6Al4V alloy. A macrostructurally inhomogeneous stir zone was obtained with both its top and middle parts composed of fine dynamically recrystallized α- and β-Ti grains, as well as coarse intermetallic compounds (IMCs) of Ti(2)Cu and TiCu(2), respectively. Some β grains experienced β → α decomposition with the formation of acicular α-Ti microstructures either inside the former β-Ti grains or at their grain boundaries. Both types of β → α decomposition were especially clearly manifested in the vicinity of the Ti(2)Cu grains, i.e., in the copper-lean regions. The middle part of the stir zone additionally contained large dislocation-free β-Ti grains that resulted from static recrystallization. Spinodal decomposition, as well as solid-state amorphization of copper-rich β-Ti grains, were discovered. The FSPed stir zone possessed hardness that was enhanced by 25% as compared to that of the base metal, as well as higher strength, ductility, and wear resistance than those obtained using four-pass FSPed Ti6Al4V. |
---|