Cargando…
In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors
The improvement of cancer chemotherapy remains a major challenge, and thus new drugs are urgently required to develop new treatment regimes. Curcumin, a polyphenolic antioxidant derived from the rhizome of turmeric (Curcuma longa L.), has undergone extensive preclinical investigations and, thereby,...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000198/ https://www.ncbi.nlm.nih.gov/pubmed/35409325 http://dx.doi.org/10.3390/ijms23073966 |
_version_ | 1784685375943344128 |
---|---|
author | Saeed, Mohamed E. M. Yücer, Rümeysa Dawood, Mona Hegazy, Mohamed-Elamir F. Drif, Assia Ooko, Edna Kadioglu, Onat Seo, Ean-Jeong Kamounah, Fadhil S. Titinchi, Salam J. Bachmeier, Beatrice Efferth, Thomas |
author_facet | Saeed, Mohamed E. M. Yücer, Rümeysa Dawood, Mona Hegazy, Mohamed-Elamir F. Drif, Assia Ooko, Edna Kadioglu, Onat Seo, Ean-Jeong Kamounah, Fadhil S. Titinchi, Salam J. Bachmeier, Beatrice Efferth, Thomas |
author_sort | Saeed, Mohamed E. M. |
collection | PubMed |
description | The improvement of cancer chemotherapy remains a major challenge, and thus new drugs are urgently required to develop new treatment regimes. Curcumin, a polyphenolic antioxidant derived from the rhizome of turmeric (Curcuma longa L.), has undergone extensive preclinical investigations and, thereby, displayed remarkable efficacy in vitro and in vivo against cancer and other disorders. However, pharmacological limitations of curcumin stimulated the synthesis of numerous novel curcumin analogs, which need to be evaluated for their therapeutic potential. In the present study, we calculated the binding affinities of 50 curcumin derivatives to known cancer-related target proteins of curcumin, i.e., epidermal growth factor receptor (EGFR) and nuclear factor κB (NF-κB) by using a molecular docking approach. The binding energies for EGFR were in a range of −12.12 (±0.21) to −7.34 (±0.07) kcal/mol and those for NF-κB ranged from −12.97 (±0.47) to −6.24 (±0.06) kcal/mol, indicating similar binding affinities of the curcumin compounds for both target proteins. The predicted receptor-ligand binding constants for EGFR and curcumin derivatives were in a range of 0.00013 (±0.00006) to 3.45 (±0.10) µM and for NF-κB in a range of 0.0004 (±0.0003) to 10.05 (±4.03) µM, indicating that the receptor-ligand binding was more stable for EGFR than for NF-κB. Twenty out of 50 curcumin compounds showed binding energies to NF-κB smaller than −10 kcal/mol, while curcumin as a lead compound revealed free binding energies of >−10 kcal/mol. Comparable data were obtained for EGFR: 15 out of 50 curcumin compounds were bound to EGFR with free binding energies of <−10 kcal/mol, while the binding affinity of curcumin itself was >−10 kcal/mol. This indicates that the derivatization of curcumin may indeed be a promising strategy to improve targe specificity and to obtain more effective anticancer drug candidates. The in silico results have been exemplarily validated using microscale thermophoresis. The bioactivity has been further investigated by using resazurin cell viability assay, lactate dehydrogenase assay, flow cytometric measurement of reactive oxygen species, and annexin V/propidium iodide assay. In conclusion, molecular docking represents a valuable approach to facilitate and speed up the identification of novel targeted curcumin-based drugs to treat cancer. |
format | Online Article Text |
id | pubmed-9000198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90001982022-04-12 In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors Saeed, Mohamed E. M. Yücer, Rümeysa Dawood, Mona Hegazy, Mohamed-Elamir F. Drif, Assia Ooko, Edna Kadioglu, Onat Seo, Ean-Jeong Kamounah, Fadhil S. Titinchi, Salam J. Bachmeier, Beatrice Efferth, Thomas Int J Mol Sci Article The improvement of cancer chemotherapy remains a major challenge, and thus new drugs are urgently required to develop new treatment regimes. Curcumin, a polyphenolic antioxidant derived from the rhizome of turmeric (Curcuma longa L.), has undergone extensive preclinical investigations and, thereby, displayed remarkable efficacy in vitro and in vivo against cancer and other disorders. However, pharmacological limitations of curcumin stimulated the synthesis of numerous novel curcumin analogs, which need to be evaluated for their therapeutic potential. In the present study, we calculated the binding affinities of 50 curcumin derivatives to known cancer-related target proteins of curcumin, i.e., epidermal growth factor receptor (EGFR) and nuclear factor κB (NF-κB) by using a molecular docking approach. The binding energies for EGFR were in a range of −12.12 (±0.21) to −7.34 (±0.07) kcal/mol and those for NF-κB ranged from −12.97 (±0.47) to −6.24 (±0.06) kcal/mol, indicating similar binding affinities of the curcumin compounds for both target proteins. The predicted receptor-ligand binding constants for EGFR and curcumin derivatives were in a range of 0.00013 (±0.00006) to 3.45 (±0.10) µM and for NF-κB in a range of 0.0004 (±0.0003) to 10.05 (±4.03) µM, indicating that the receptor-ligand binding was more stable for EGFR than for NF-κB. Twenty out of 50 curcumin compounds showed binding energies to NF-κB smaller than −10 kcal/mol, while curcumin as a lead compound revealed free binding energies of >−10 kcal/mol. Comparable data were obtained for EGFR: 15 out of 50 curcumin compounds were bound to EGFR with free binding energies of <−10 kcal/mol, while the binding affinity of curcumin itself was >−10 kcal/mol. This indicates that the derivatization of curcumin may indeed be a promising strategy to improve targe specificity and to obtain more effective anticancer drug candidates. The in silico results have been exemplarily validated using microscale thermophoresis. The bioactivity has been further investigated by using resazurin cell viability assay, lactate dehydrogenase assay, flow cytometric measurement of reactive oxygen species, and annexin V/propidium iodide assay. In conclusion, molecular docking represents a valuable approach to facilitate and speed up the identification of novel targeted curcumin-based drugs to treat cancer. MDPI 2022-04-02 /pmc/articles/PMC9000198/ /pubmed/35409325 http://dx.doi.org/10.3390/ijms23073966 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Saeed, Mohamed E. M. Yücer, Rümeysa Dawood, Mona Hegazy, Mohamed-Elamir F. Drif, Assia Ooko, Edna Kadioglu, Onat Seo, Ean-Jeong Kamounah, Fadhil S. Titinchi, Salam J. Bachmeier, Beatrice Efferth, Thomas In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors |
title | In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors |
title_full | In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors |
title_fullStr | In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors |
title_full_unstemmed | In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors |
title_short | In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors |
title_sort | in silico and in vitro screening of 50 curcumin compounds as egfr and nf-κb inhibitors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000198/ https://www.ncbi.nlm.nih.gov/pubmed/35409325 http://dx.doi.org/10.3390/ijms23073966 |
work_keys_str_mv | AT saeedmohamedem insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT yucerrumeysa insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT dawoodmona insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT hegazymohamedelamirf insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT drifassia insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT ookoedna insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT kadiogluonat insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT seoeanjeong insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT kamounahfadhils insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT titinchisalamj insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT bachmeierbeatrice insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors AT efferththomas insilicoandinvitroscreeningof50curcumincompoundsasegfrandnfkbinhibitors |