Cargando…

A Green and Facile Microvia Filling Method via Printing and Sintering of Cu-Ag Core-Shell Nano-Microparticles

In this work, we developed an eco-friendly and facile microvia filling method by using printing and sintering of Cu-Ag core-shell nano-microparticles (Cu@Ag NMPs). Through a chemical reduction reaction in a modified silver ammonia solution with L-His complexing agent, Cu@Ag NMPs with compact and uni...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Guannan, Luo, Shaogen, Lai, Tao, Lai, Haiqi, Luo, Bo, Li, Zebo, Zhang, Yu, Cui, Chengqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000309/
https://www.ncbi.nlm.nih.gov/pubmed/35407182
http://dx.doi.org/10.3390/nano12071063
Descripción
Sumario:In this work, we developed an eco-friendly and facile microvia filling method by using printing and sintering of Cu-Ag core-shell nano-microparticles (Cu@Ag NMPs). Through a chemical reduction reaction in a modified silver ammonia solution with L-His complexing agent, Cu@Ag NMPs with compact and uniform Ag shells, excellent sphericity and oxidation resistance were synthesized. The as-synthesized Cu@Ag NMPs show superior microvia filling properties to Cu nanoparticles (NPs), Ag NPs, and Cu NMPs. By developing a dense refill method, the porosity of the sintered particles within the microvias was significantly reduced from ~30% to ~10%, and the electrical conductivity is increased about twenty-fold. Combing the Cu@Ag NMPs and the dense refill method, the microvias could obtain resistivities as low as 7.0 and 6.3 μΩ·cm under the sintering temperatures of 220 °C and 260 °C, respectively. The material and method in this study possess great potentials in advanced electronic applications.