Cargando…

Role of Different Material Amendments in Shaping the Content of Heavy Metals in Maize (Zea mays L.) on Soil Polluted with Petrol

Petroleum substances are among the xenobiotics that most often contaminate the natural environment. They have a strong effect on soil, water, and other components of the environment. The aim of this pot experiment has been to determine the effect of different soil material amendments (compost, 3%; b...

Descripción completa

Detalles Bibliográficos
Autores principales: Wyszkowski, Mirosław, Kordala, Natalia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000311/
https://www.ncbi.nlm.nih.gov/pubmed/35407954
http://dx.doi.org/10.3390/ma15072623
Descripción
Sumario:Petroleum substances are among the xenobiotics that most often contaminate the natural environment. They have a strong effect on soil, water, and other components of the environment. The aim of this pot experiment has been to determine the effect of different soil material amendments (compost, 3%; bentonite, 2% relative to the soil mass or calcium oxide, in amounts corresponding to one full hydrolytic acidity) on the content of heavy metals in aerial parts of maize (Zea mays L.) grown on soil polluted with petrol (0, 2.5, 5, and 10 cm(3) kg(−1) of soil). The content of all heavy metals, except copper, in the aerial biomass of maize was positively correlated, but biomass yield negatively correlated, with the increasing doses of petrol. The highest increase in the content of heavy metals was noted for chromium and manganese. Materials used for phytostabilisation (compost, bentonite, and calcium oxide) had a significant effect on the content of heavy metals and biomass yield of maize. They contributed to the modified accumulation of elements, especially chromium, copper, and cobalt in the aerial biomass of maize. In comparison with the control series (without material amendments), the application of calcium oxide proved to be most effective. It had the most evident influence on the chemical composition of maize, limiting the accumulation of lead, zinc, manganese, and iron and increasing biomass yield.