Cargando…

Optimization of Titanium Dental Mesh Surfaces for Biological Sealing and Prevention of Bacterial Colonization

Titanium dental meshes have a wide application in order to ensure the retention of calcium phosphate-based biomaterials to regenerate bone tissue. These meshes are temporary and must grow a soft tissue to prevent bacterial colonization and provide stability. In this work, we aimed to optimize the ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Cruz, Nuno, Tondela, João Paulo, Martins, Maria Inês, Velasco-Ortega, Eugenio, Gil, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000448/
https://www.ncbi.nlm.nih.gov/pubmed/35407983
http://dx.doi.org/10.3390/ma15072651
Descripción
Sumario:Titanium dental meshes have a wide application in order to ensure the retention of calcium phosphate-based biomaterials to regenerate bone tissue. These meshes are temporary and must grow a soft tissue to prevent bacterial colonization and provide stability. In this work, we aimed to optimize the roughness of the meshes to obtain a good biological seal while maintaining a behavior that did not favor bacterial colonization. To this end, six types of surfaces were studied: machined as a control, polished, sandblasted with three different alumina sizes and sintered. The roughness, contact angles and biological behavior of the samples using fibroblast cultures at 7, 24 and 72 h were determined as well as cytotoxicity studies. Cultures of two very common bacterial strains in the oral cavity were also carried out: Streptococcus sanguinis and Lactobacillus salivarius. The results showed that the samples treated with alumina particles by sandblasting at 200 micrometers were the ones that performed best with fibroblasts and also with the number of bacterial colonies in both strains. According to the results, we see in this treatment a candidate for the surface treatment of dental meshes with an excellent performance.