Cargando…

Probing the Reaction Mechanisms of 3,5-Difluoro-2,4,6-Trinitroanisole (DFTNAN) through a Comparative Study with Trinitroanisole (TNAN)

To probe the thermal decomposition mechanisms of a novel fluorinated low-melting-point explosive 3,5-difluoro-2,4,6-trinitroanisole (DFTNAN), a comparative study with trinitroanisole (TNAN) was performed under different heating conditions. The thermal decomposition processes and initial reactions we...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiao, Qingjie, Li, Tianqi, Ou, Yapeng, Jing, Suming, Wang, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000474/
https://www.ncbi.nlm.nih.gov/pubmed/35407900
http://dx.doi.org/10.3390/ma15072568
Descripción
Sumario:To probe the thermal decomposition mechanisms of a novel fluorinated low-melting-point explosive 3,5-difluoro-2,4,6-trinitroanisole (DFTNAN), a comparative study with trinitroanisole (TNAN) was performed under different heating conditions. The thermal decomposition processes and initial reactions were monitored by DSC-TG-FTIR-MS and T-jump-PyGC-MS coupling analyses, respectively. The results show that fluorine decreased the thermal stability of the molecular structure, and the trigger bond was transferred from the ortho-nitro group of the ether to the para-nitro group. The possible reaction pathway of DFTNAN after the initial bond breakage is the rupture of the dissociative nitro group with massive heat release, which induces the ring opening of benzene. Major side reactions include the generation of polycyclic compounds and fluorine atom migration. Fluorine affects the thermal stability and changes the reaction pathway, and fluorinated products appear in the form of fluorocarbons due to the high stability of the C-F bond.