Cargando…

One-Step Preparation of S, N Co-Doped Carbon Quantum Dots for the Highly Sensitive and Simple Detection of Methotrexate

(1) Background: Carbon quantum dots (CQDs) are a new class of carbon nanomaterials with favorable features, such as tunable luminescence, unique optical properties, water solubility, and lack of cytotoxicity; they are readily applied in biomedicine. (2) Methods: S, N co-doped CQDs were prepared to d...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Xiaoyi, Si, Xiaojing, Han, Mei, Bai, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000489/
https://www.ncbi.nlm.nih.gov/pubmed/35408528
http://dx.doi.org/10.3390/molecules27072118
Descripción
Sumario:(1) Background: Carbon quantum dots (CQDs) are a new class of carbon nanomaterials with favorable features, such as tunable luminescence, unique optical properties, water solubility, and lack of cytotoxicity; they are readily applied in biomedicine. (2) Methods: S, N co-doped CQDs were prepared to develop a highly selective and sensitive fluorescence technique for the detection of methotrexate (MTX). For this purpose, citric acid and thiourea were used as C, N, and S sources in a single-step hydrothermal process to prepare the S, N co-doped CQDs, which displayed remarkable fluorescence properties. (3) Results: Two optimal emissions were observed at the excitation/emission wavelengths of 320/425 nm, respectively. The two emissions were significantly quenched in the presence of MTX. Under optimal conditions, MTX was detected in the linear concentration range of 1–300 μmol/L, with the detection limit of 0.33 μmol/L. The sensing mechanism was due to the fact that the effect of the inner filter on MTX and S, N-CQDs causes fluorescence quenching. The contents of MTX in real medicine samples were evaluated with acceptable recoveries of 98–101%. (4) Conclusions: This approach has great potential for detecting MTX in pharmaceutical analysis.