Cargando…

Low-Temperature PECVD Growth of Germanium for Mode-Locking of Er-Doped Fiber Laser

A low-temperature plasma-enhanced chemical vapor deposition grown germanium (Ge) thin-film is employed as a nonlinear saturable absorber (SA). This Ge SA can passively mode-lock the erbium-doped fiber laser (EDFL) for soliton generation at a central wavelength of 1600 nm. The lift-off and transfer o...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Chun-Yen, Cheng, Chih-Hsien, Chi, Yu-Chieh, Set, Sze Yun, Yamashita, Shinji, Lin, Gong-Ru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000496/
https://www.ncbi.nlm.nih.gov/pubmed/35407314
http://dx.doi.org/10.3390/nano12071197
Descripción
Sumario:A low-temperature plasma-enhanced chemical vapor deposition grown germanium (Ge) thin-film is employed as a nonlinear saturable absorber (SA). This Ge SA can passively mode-lock the erbium-doped fiber laser (EDFL) for soliton generation at a central wavelength of 1600 nm. The lift-off and transfer of the Ge film synthesized upon the SiO(2)/Si substrate are performed by buffered oxide etching and direct imprinting. The Ge film with a thickness of 200 nm exhibits its Raman peak at 297 cm(−1), which both the nanocrystalline and polycrystalline Ge phases contribute to. In addition, the Ge thin-film is somewhat oxidized but still provides two primary crystal phases at the (111) and (311) orientations with corresponding diffraction ring radii of 0.317 and 0.173 nm, respectively. The nanocrystalline structure at (111) orientation with a corresponding d-spacing of 0.319 nm is also observed. The linear and nonlinear transmittances of the Ge thin-film are measured to show its self-amplitude modulation coefficient of 0.016. This is better than nano-scale charcoal and carbon-black SA particles for initiating the mode-locking at the first stage. After the Ge-based saturable absorber into the L-band EDFL system without using any polarized components, the narrowest pulsewidth and broadest linewidth of the soliton pulse are determined as 654.4 fs and 4.2 nm, respectively, with a corresponding time–bandwidth product of 0.32 under high pumping conditions.