Cargando…
Organo-Nanocups Assist the Formation of Ultra-Small Palladium Nanoparticle Catalysts for Hydrogen Evolution Reaction
Ultra-small palladium nanoparticles were synthesized and applied as catalysts for a hydrogen evolution reaction. The palladium metal precursor was produced via beta-cyclodextrin as organo-nanocup (ONC) capping agent to produce ultra-small nanoparticles used in this study. The produced ~3 nm nanopart...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000559/ https://www.ncbi.nlm.nih.gov/pubmed/35408023 http://dx.doi.org/10.3390/ma15072692 |
Sumario: | Ultra-small palladium nanoparticles were synthesized and applied as catalysts for a hydrogen evolution reaction. The palladium metal precursor was produced via beta-cyclodextrin as organo-nanocup (ONC) capping agent to produce ultra-small nanoparticles used in this study. The produced ~3 nm nanoparticle catalyst was then characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FTIR) to confirm the successful synthesis of ~3 nm palladium nanoparticles. The nanoparticles’ catalytic ability was explored via the hydrolysis reaction of sodium borohydride. The palladium nanoparticle catalyst performed best at 303 K at a pH of 7 with 925 μmol of sodium borohydride having an H(2) generation rate of 1.431 mL min(−1) mL(cat)(−1). The activation energy of the palladium catalyst was calculated to be 58.9 kJ/mol. |
---|