Cargando…
Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS
Graphene is often used to improve interlaminar fracture toughness of carbon fiber/epoxy resin (CF/EP) composites. It is still a challenge to improve the toughness while maintaining the in-layer properties. In this study, 2D graphene oxide carbon fiber reinforced epoxy resin matrix (2D CF-GO/EP) comp...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000562/ https://www.ncbi.nlm.nih.gov/pubmed/35407302 http://dx.doi.org/10.3390/nano12071184 |
_version_ | 1784685464693768192 |
---|---|
author | Ma, Yuqin Chen, Yi Li, Fei Xu, Yiren Xu, Wei Zhao, Yatao Guo, Haiyin Li, Yatao Yang, Zedu Xu, Yi |
author_facet | Ma, Yuqin Chen, Yi Li, Fei Xu, Yiren Xu, Wei Zhao, Yatao Guo, Haiyin Li, Yatao Yang, Zedu Xu, Yi |
author_sort | Ma, Yuqin |
collection | PubMed |
description | Graphene is often used to improve interlaminar fracture toughness of carbon fiber/epoxy resin (CF/EP) composites. It is still a challenge to improve the toughness while maintaining the in-layer properties. In this study, 2D graphene oxide carbon fiber reinforced epoxy resin matrix (2D CF-GO/EP) composites were prepared by a vacuum infiltration hot-press forming experimental system (VIHPS), and three-point flexural and end notch flexural (ENF) tests were carried out. With the increase of the fiber mass fraction in the composites, the mode II interlaminar fracture toughness (G(II)(C)) layers decrease gradually, and the bond property between the fiber and matrix interface layer becomes worse, because the accumulation of dense fiber bundles reduces the matrix penetration ability of cracks. However, the flexural properties increased first and then decreased, and reached the best flexural properties at 64.9%. When the fiber mass fraction is too high, the interlamellar bonding properties will decrease, and the fiber bundles will compress and affect each other. The delamination phenomenon will occur between the layers of the composites, which affects the overall bearing strength and stress limit of the composites. The results of the study show that the composites prepared by VIHPS have excellent mechanical properties, and the content of carbon fiber plays an important role in the influencing factors of the interlaminar and in-layer properties of composites. |
format | Online Article Text |
id | pubmed-9000562 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90005622022-04-12 Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS Ma, Yuqin Chen, Yi Li, Fei Xu, Yiren Xu, Wei Zhao, Yatao Guo, Haiyin Li, Yatao Yang, Zedu Xu, Yi Nanomaterials (Basel) Article Graphene is often used to improve interlaminar fracture toughness of carbon fiber/epoxy resin (CF/EP) composites. It is still a challenge to improve the toughness while maintaining the in-layer properties. In this study, 2D graphene oxide carbon fiber reinforced epoxy resin matrix (2D CF-GO/EP) composites were prepared by a vacuum infiltration hot-press forming experimental system (VIHPS), and three-point flexural and end notch flexural (ENF) tests were carried out. With the increase of the fiber mass fraction in the composites, the mode II interlaminar fracture toughness (G(II)(C)) layers decrease gradually, and the bond property between the fiber and matrix interface layer becomes worse, because the accumulation of dense fiber bundles reduces the matrix penetration ability of cracks. However, the flexural properties increased first and then decreased, and reached the best flexural properties at 64.9%. When the fiber mass fraction is too high, the interlamellar bonding properties will decrease, and the fiber bundles will compress and affect each other. The delamination phenomenon will occur between the layers of the composites, which affects the overall bearing strength and stress limit of the composites. The results of the study show that the composites prepared by VIHPS have excellent mechanical properties, and the content of carbon fiber plays an important role in the influencing factors of the interlaminar and in-layer properties of composites. MDPI 2022-04-01 /pmc/articles/PMC9000562/ /pubmed/35407302 http://dx.doi.org/10.3390/nano12071184 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ma, Yuqin Chen, Yi Li, Fei Xu, Yiren Xu, Wei Zhao, Yatao Guo, Haiyin Li, Yatao Yang, Zedu Xu, Yi Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS |
title | Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS |
title_full | Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS |
title_fullStr | Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS |
title_full_unstemmed | Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS |
title_short | Effect of Fiber Mass Fraction on Microstructure and Properties of 2D CF-GO/EP Composite Prepared by VIHPS |
title_sort | effect of fiber mass fraction on microstructure and properties of 2d cf-go/ep composite prepared by vihps |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000562/ https://www.ncbi.nlm.nih.gov/pubmed/35407302 http://dx.doi.org/10.3390/nano12071184 |
work_keys_str_mv | AT mayuqin effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT chenyi effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT lifei effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT xuyiren effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT xuwei effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT zhaoyatao effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT guohaiyin effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT liyatao effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT yangzedu effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps AT xuyi effectoffibermassfractiononmicrostructureandpropertiesof2dcfgoepcompositepreparedbyvihps |