Cargando…
Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization
Hollow niobium oxide nanospheres were successfully synthesized by using prepared three-dimensional (3D) mesoporous carbon as the hard template. The 3D mesoporous carbon materials were prepared by using histidine as the carbon source and silica microspheres as the hard template. The samples were char...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000609/ https://www.ncbi.nlm.nih.gov/pubmed/35407224 http://dx.doi.org/10.3390/nano12071106 |
_version_ | 1784685476414750720 |
---|---|
author | Wang, Yong Ren, Lei Li, Zifeng Xin, Feng |
author_facet | Wang, Yong Ren, Lei Li, Zifeng Xin, Feng |
author_sort | Wang, Yong |
collection | PubMed |
description | Hollow niobium oxide nanospheres were successfully synthesized by using prepared three-dimensional (3D) mesoporous carbon as the hard template. The 3D mesoporous carbon materials were prepared by using histidine as the carbon source and silica microspheres as the hard template. The samples were characterized by XRD, BET, SEM, TEM and other methods. The results show that the prepared niobium oxide nanospheres have a hollow spherical structure with an outer diameter of about 45 nm and possess a high specific surface area of 134.3 m(2)·g(−1). Furthermore, the 3D mesoporous carbon materials have a typical porous structure with a high specific surface area of 893 m(2)·g(−1). The hollow niobium oxide nanospheres exhibit high catalytic activity in oxidative desulfurization. Under optimal reaction conditions, the DBT conversion rate of the simulated oil is as high as 98.5%. Finally, a possible reaction mechanism is proposed. |
format | Online Article Text |
id | pubmed-9000609 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90006092022-04-12 Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization Wang, Yong Ren, Lei Li, Zifeng Xin, Feng Nanomaterials (Basel) Article Hollow niobium oxide nanospheres were successfully synthesized by using prepared three-dimensional (3D) mesoporous carbon as the hard template. The 3D mesoporous carbon materials were prepared by using histidine as the carbon source and silica microspheres as the hard template. The samples were characterized by XRD, BET, SEM, TEM and other methods. The results show that the prepared niobium oxide nanospheres have a hollow spherical structure with an outer diameter of about 45 nm and possess a high specific surface area of 134.3 m(2)·g(−1). Furthermore, the 3D mesoporous carbon materials have a typical porous structure with a high specific surface area of 893 m(2)·g(−1). The hollow niobium oxide nanospheres exhibit high catalytic activity in oxidative desulfurization. Under optimal reaction conditions, the DBT conversion rate of the simulated oil is as high as 98.5%. Finally, a possible reaction mechanism is proposed. MDPI 2022-03-28 /pmc/articles/PMC9000609/ /pubmed/35407224 http://dx.doi.org/10.3390/nano12071106 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Yong Ren, Lei Li, Zifeng Xin, Feng Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization |
title | Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization |
title_full | Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization |
title_fullStr | Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization |
title_full_unstemmed | Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization |
title_short | Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization |
title_sort | preparation of hollow niobium oxide nanospheres with enhanced catalytic activity for oxidative desulfurization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000609/ https://www.ncbi.nlm.nih.gov/pubmed/35407224 http://dx.doi.org/10.3390/nano12071106 |
work_keys_str_mv | AT wangyong preparationofhollowniobiumoxidenanosphereswithenhancedcatalyticactivityforoxidativedesulfurization AT renlei preparationofhollowniobiumoxidenanosphereswithenhancedcatalyticactivityforoxidativedesulfurization AT lizifeng preparationofhollowniobiumoxidenanosphereswithenhancedcatalyticactivityforoxidativedesulfurization AT xinfeng preparationofhollowniobiumoxidenanosphereswithenhancedcatalyticactivityforoxidativedesulfurization |